
5 Fracture and Fatigue Models for 

Composites 

5.1 Introduction 

The effective fatigue model for engineering composites analysis is decisive for 
a precise estimation of the overall life of this structure and satisfactory reliability 
analysis of such materials. Various theoretical, experimental and computational 
criteria must be satisfied in the same time to obtain such a model [37,172,246,298]. 
These criteria may include material properties of composite constituents [226,258], 
composite type [229] (ductile or brittle components), spatial distribution, length  
(continuity) as well as size effect of the reinforcing fibres [219,220,335], frequency 
effects [350], load amplitude type [48] (constant or not), micromechanical 
phenomena [110,217,279], etc. First of all, a very precise, experimentally based 
deterministic idea of fatigue life cycle estimation has to be proposed. It should be 
adequate for the composite components, the technology applied and numerical 
methodology implemented. Monitoring of most engineering composites and 
preventing the fatigue failure is very complicated and usually demands very 
modern technology [360]. It is widely known that the interface conditions and 
phenomena can be decisive factors for both static fracture and fatigue resistance of 
laminates, fibre- and particle-reinforced composites. Analytical models even in 
the case of linear elasticity models are complicated [369], therefore numerical 
analysis is very popular in this area. Engineering FEM software makes it possible 
to simulate delamination processes [362] and fatigue damage [62,277] in 
fibre-reinforced composites as well as time-dependent interlaminar debonding 
processes [69], for instance.   

The application of the well-known Palmgren-Miner or Paris-Erdogan laws is 
not always recommended as the most effective method in spite of their simplicity 
or wide technological usage. The choice of fatigue theory should be accompanied 
with a corresponding sensitivity analysis, where physical and material input 
parameters included into the fatigue life cycle equation are treated as design 
variables. Due to the sensitivity gradients determination, the most decisive 
parameters should be considered, while the remaining ones, considering further 
stochastic analysis complexity, may be omitted. The sensitivity gradients can be 
determined analytically using symbolic computation packages (MAPLE, 
MATLAB, MATHEMATICA, etc.) or may result from discrete FEM 
computations, for instance. A related problem is to decide if the local concept of 
composite fatigue is to be applied (critical element concept, for instance), where 
local fatigue damage causes global structural changes of the composite reliability. 
This results in computational FEM or Boundary Element Method (BEM) based 
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analyses of the whole composite in its real configuration, including the 
microgeometry and all interface phenomena into it. Alternatively, the 
homogenisation method can be applied, where the complementary energy or 
potential energy of the entire system is the only measure of composite fatigue. 
Then, the global discretisation of the original structure is used instead and the 
equivalent, homogeneous medium is simulated numerically.  

Next, an appropriate analytical or computational stochastic analysis method 
corresponding to the level of randomness of input parameters is considered. The 
Monte Carlo simulation based analysis, stochastic second or third order 
perturbation method or, alternatively, stochastic spectral analysis can be taken into 
account. The first method does not have any restrictions on input random variable 
probabilistic moment interrelations. However, time consuming computations can 
be expected. Numerical analysis using the second approach implementation is very 
fast, but not sufficiently effective for larger than 10% variations of input random 
parameters, while the last approach has some limitations on convergence of the 
output parameters and fields. The choice between the methods proposed is implied 
by the availability of the experimental techniques, considering the input 
randomness level. On the other hand this choice is determined by relevant 
reliability criteria for composites. Furthermore, having collected most of the 
deterministic fatigue concepts for composites, corresponding stochastic equations 
can be obtained automatically using analytical derivation or computer simulation 
techniques.  

Combination of deterministic models and stochastic methods requires another 
engineering decision about the choice of the randomness type to be analysed. It is 
known from recent references in this area that (i) random variables, (ii) random 
fields as well as (iii) stochastic processes can be considered as the input of the 
entire fatigue analysis. According to the state-of-the-art research, the first two 
types of randomness can be considered together with FEM or BEM based 
computational simulation, while the stochastic processes can be used in terms of 
direct simulation of the fatigue process when the analytical solution is known. 
Some approximate methods of combining discrete modelling with stochastic 
degradation of homogeneous materials are available in reliability modeling; 
however without any application in engineering composites area until now.  

Various fatigue models worked out for composites can be classified in different 
ways: using the scale of the model application (local or global) or considering the 
main goal of the analysis (fatigue cycle number, its stiffness reduction, its crack 
growth or damage function determination), the analysis type (deterministic, 
probabilistic or stochastic) as well as the composite material type (ceramic, 
polymer-based, metal matrix and so forth).  

Considering various scales of engineering composites and fatigue phenomena 
related to them, the local and, alternatively, global approaches are considered. 
Local and microlocal models represented by the critical element concept [299], 
assume that there exists so-called critical element in the entire composite structure 
that controls the total fatigue damage (as well as subcrtitical elements, too), and 
then the local damage is governing the reliability of the whole composite structure. 
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This assumption results in the fact that the whole composite, together with 
microstructural defects increasing during fatigue processes, should be discretised 
for the FEM or BEM simulation. Taking into account the application of the 
probabilistic analysis, the model implies the randomness in microgeometry of the 
composite, which is extremely difficult in computational simulation, as is shown 
below. Some special purpose algorithms are introduced to replace the randomness 
in composite interface geometry with the stochasticity of material thermoelastic 
properties.  

Alternatively, a homogenisation method is proposed for more efficient fracture 
and fatigue phenomena analysis [223] that originated from analysis of linear 
periodic elastic composites without defects. The main idea is to find the medium 
equivalent to the original composite in terms of complementary energy, or 
potential energy, equal for both media. The final goal of the homogenisation 
procedure is to find the effective material characteristics defining the equivalent 
homogeneous medium. The effective constitutive relations can be found for the 
composite with elastic, elastoplastic or even viscoelastoplastic components with 
and/or without microstructural defects. The general assumption of the model 
means, however, that every local phenomenon can be averaged in some sense in 
the entire composite volume and that the global, not local, phenomena result in the 
overall composite fatigue.  

5.2 Existing Techniques Overview  

Taking into account the results of fatigue analysis, four essentially different 
approaches can be observed: (i) direct determination of the fatigue cycle number N,
(ii) fatigue stiffness reduction where mechanical properties of the composite are 
decreased in the function of N, (iii) observation of the crack length growth a as a 
function of fatigue cycle number (as da/dN, taking into account the physical nature 
of fatigue phenomenon) or, alternatively, (iv) estimation of the damage function in 
terms of dD/dN. A damage function is usually proposed as follows:  
(1) D=0 with cycle number n=0;  
(2) D=1, where failure occurs;  

(3) ∑
=

∆=
n

i
iDD

1

, where iD∆  is the amount of damage accumulation during fatigue 

at stress level ri. Generally, the function D can be represented as   

( ),...,,,, MTfrnDD = (5.1) 

where n indexes a number of the current fatigue cycle, r is the applied stress level, f
denotes applied stress frequency, T is temperature, while M denotes the moisture 
content. Then, contrary to the crack length growth analysis, the damage function 
can be proposed each time in a different form as a function of various structural 
parameters. 
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Let us note that direct determination of fatigue cycle number makes it possible 
to derive, without any further computational simulations, the life of the structure 
till the failure, while the stiffness reduction approach is frequently used together 
with the FEM or BEM structural analyses. The crack length growth and damage 
function approach are used together with the structural analysis FEM programs, 
usually to compute the stress intensity factors. However final direct or symbolic 
integration of crack length or damage function is necessary to complete the entire 
fatigue life computations.  

Considering the mathematical nature of the fatigue life cycle estimation, the 
deterministic approach can be applied, where all input parameters are defined 
uniquely by their mean values. Otherwise, the whole variety of probabilistic 
approaches can be introduced where fatigue structural life is described as a simple 
random variable with structural parameters defined deterministically and random 
external loads. The cumulative fatigue damage can be treated as a random process,
where all design parameters are modelled as stochastic parameters. However, in all
probabilistic approaches sufficient statistical information about all input parameters 
is necessary, which is especially complicated in the last approach where random 
processes are considered due to the statistical input in some constant periods of 
time (using the same technology to assure the same randomness level).  

The analysis of fatigue life cycle number begins with direct estimation of this 
parameter by a simple power function (A5.1) consisting of stress amplitude as well 
as some material constant(s). Alternatively, an exponential-logarithmic equation 
can be proposed (A5.2), where temperature, strength and residual stresses are 
inserted. Both of them have a deterministic form and can be randomised using any 
of the methods described below. The weak point is the homogeneous character of 
the material being analysed; to use these criteria for composites, the effective 
parameters should be calculated first. In contrary to theoretical models, the 
experimentally based probabilistic law can be proposed where parameters of the 
Weibull distribution of static strength are inserted (A5.3); it is important to 
underline that this law does not have its deterministic origin.  

More complicated from the viewpoint of engineering practice are the stiffness 
reduction models (cf. A5.4-A5.7), where structural material characteristics are 
reduced together with a successive fatigue cycle number increase. The stiffness 
reduction model is used in FEM or BEM dynamical modelling to recalculate the 
component stiffness in each cycle. It is done using a linear model for stiffness 
reduction, cf. (A5.5), as well as some power laws (see (A5.4), for example) 
determined on the basis of mechanical properties reduction rewritten for 
homogeneous media only. An alternative power law presented as (A5.7) consists 
of the time of rupture, creep and fatigue, measured in hours. Considering the 
random analysis aspects, a probabilistic treatment of material properties seems to 
be much more justified.  

Deterministic fatigue crack growth analysis presented by (A5.8) - (A5.29) can 
be classified taking into account the physical basis of this law formation, such as 
energy approaches (A5.8) - (A5.11), crack opening displacement (COD) based 
approaches (A5.12), (A5.15) - (A5.17), (A5.19) and (A5.20), continuous 
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dislocation formalism (A5.13), skipband decohesion (A5.18), nucleation rate 
process models (A5.14) and (A5.15), dislocation approaches (A5.23) and (A5.24), 
monotonic yield strength dependence (A5.25) and (A5.31) as well as another 
mixed laws (A5.26) - (A5.30) and (A5.32) - (A5.35). Description of the 
derivative da/dN enables further integration and determination of the critical crack
length. The second classification method is based on a verification of the validity 
of a particular theory in terms of elastic (A5.8) - (A5.20), (A5.26) - (A5.30), 
(A5.32) - (A5.34) or elastoplastic (A5.22) - (A5.25) and (A5.31) mechanism of 
material fracture. Most of them are used for composites, even though they are 
defined for homogeneous media, except for the Ratwani-Kan and Wang-
Crossman models (A5.21) and (A5.22), where composite material characteristics 
are inserted. All of the homogeneous models contain stress intensity factor ∆K in 
various powers (from 2 to n), while composite-oriented theories are based on 
delamination length parameter. The structure of these equations enables one to 
include statistical information about any material or geometrical parameters and, 
next, to use a simulation or perturbation technique to determine expected values 
and variances of the critical crack length, which are very useful in stochastic 
reliability analysis.  

An essentially different methodology is proposed for the statistical analysis 
[9,35,130,288,333,349,359] and in the stochastic case [241,244,373], where the 
crack size and/or components material parameters, their spatial distribution may be 
treated as random processes (cf. eqns (A5.36) - (A5.44)). Then, various 
representations and types of random fields and stochastic processes are used, such 
as stationary and nonstationary Gaussian white noise, homogeneous Poisson 
counting process [204] as well as Markovian [304], birth and death or renewal 
processes. However all of them are formulated for a globally homogeneous 
material. These methods are intuitively more efficient in real fatigue process 
modelling than deterministic ones, but they require definitely a more advanced 
mathematical apparatus. Further, randomised versions of deterministic models can 
be applied together with structural analysis programs, while stochastic characters 
of a random process cannot be included without any modification in the FEM or 
the BEM computer routines. An alternative option for stochastic models of fatigue
is experimentally based formulation of fatigue law, where measurements of various 
material parameters are taken in constant time periods. Then, statistical information 
about expected values and higher order probabilistic characteristics histories is 
obtained, which allows approximation of the entire fatigue process. Such a method, 
used previously for homogeneous structural elements, is very efficient in stochastic 
reliability prognosis and then random fatigue process can be included in SFEM 
computations. Let us observe that formulations analogous to the ones presented 
above can be used for ductile fracture of composites where initiation, coalescence 
and closing of microvoids are observed under periodic or quasiperiodic external 
loads.  

A wide variety of fatigue damage function models is collected at the end of the 
appendix. The basic rules are based on the numbers of cycles to failure ((A5.45) -
(A5.48), (A5.54) - (A5.57), (A5.63) - (A5.65) and (A5.67)) illustrated with 
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classical and modified Palmgren-Miner approach, for instance. This variable is 
most frequently treated as a random variable or a random process in stochastic 
modelling. Another group consists of mechanical models, where stress (A5.50) -
(A5.53) or strain (A5.66) - (A5.67) limits are used instead of global life cycle 
number. Such models reflect the actual state of a composite during the fatigue 
process better and are more appropriate for the needs of computational 
probabilistic structural analysis. The combination of both approaches is proposed 
by Morrow in (A5.66) for constant stress amplitude and for different cycles by 
(A5.67). The overall fatigue analysis is then more complicated. However the most 
realistic model is obtained. Accidentally, Fong model is used, where damage 
function is represented by an exponential function of damage trend k, which is a 
compromise between counting fatigue cycles and mechanical tensor 
measurements.  

The very important problem is to distinguish the scale of application of the 
proposed model, especially in the context of determination of a fatigue crack 
length. The models valid for long cracks do not account for the phenomena 
appearing at the microscale of the composite specimen. On the contrary, cf. 
(A5.33), the microstructural parameter d is introduced, which makes it possible to 
include material parameters in the microscale in the equation describing the fatigue
crack growth.  

All the models for the damage function can be extended on random variables 
theoretically, by perturbation methodology, or computationally, using the relevant 
MCS approach. The essential minor point observed in most of the formulae 
described above is a general lack of microstructural analysis. The two approaches 
analysed above can model cracks in real laminates, while other types of composites 
must be analysed using fatigue laws for homogeneous materials. This approach is 
not a very realistic one, since fatigue resistance of fibres, matrices, interfaces and 
interphases is essentially different. Considering the delamination phenomena 
during periodic stress changes, an analogous fatigue approach for fibre-matrix 
interface decohesion should be worked out. The probabilistic structural analysis of 
such a model can be made using SFEM computations or by a homogenisation. 
However a closed-form fatigue law should be completed first.  

As is known, there exist a whole variety of effective probabilistic methods in 
engineering. The usage of any of these approaches depends on the following 
factors: (a) type of random variables (normal, lognormal or Weibull, for instance), 
(b) probabilistic information on the input random variables, fields or processes (in 
the form of moments or probability density function (PDF)), (c) interrelations 
between particular probabilistic characteristics of the input (of higher to the first 
order, especially), (d) method of solution of corresponding deterministic problem 
and (e) available computational time as well as (f) applied reliability criteria.  

If the closed form solution is available or can be derived symbolically using 
computational algebra, then the probability density function (PDF) of the output 
can be found starting from analogous information about the input PDF. It can be 
done generally from definition – using integration methods, or, alternatively, by the 
characteristic function derivation. The following PDF are used in this case: 
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lognormal for stress and strain tensors, lognormal and Gaussian distributions for 
elastic properties as well as for the geometry of fatigue specimen. Weibull density 
function is used to simulate external loads (shifted Rayleigh PDF, alternatively), 
yield strength as well as the fracture toughness, while the initial crack length is 
analysed using a shifted exponential probability density function.  

As is known [313], one of the following computational methods can be used in 
probabilistic fatigue modelling: Monte Carlo simulation technique, stochastic 
(second or higher order) perturbation analysis as well as some spectral techniques 
(Karhunen-Loeve or polynomial chaos decompositions). Alternatively, Hermitte-
Gauss quadratures (HGQ) or various sampling methods (Latin Hypercube 
Sampling – LHS, for instance) in conjunction with one of the latters may be used. 
Computational experience shows that simulation and sampling techniques are or 
can be implemented as exact methods. However their time cost is very high. 
Perturbation-based approaches have their limitations on higher order probabilistic
moments, but they are very fast. The efficiency of spectral methods depends on the 
order of decomposition being used, but computational time is close to that offered 
by the perturbation approach. Unfortunately, there is no available full comparison 
of all these techniques – comparison of MCS and SFEM can be found in [208], 
HGQ with SFEM in [237] and stochastic spectral FEM with MCS in [113,114]. A 
lot of numerical experiments have been conducted in this area, including 
cumulative damage analysis of composites by the MCS approach (Ma et al. [243]) 
and simulation of stochastic processes given by (A5.30) - (A5.38). However, the 
problem of an appropriate conjunction of stochastic processes and structural 
analysis using FEM or BEM techniques has not been solved yet.   

Let us analyse the application of the perturbation technique to damage function 
D extension, where it is a function of random parameter vector b. Using a 
stochastic Taylor expansion it is obtained that  

( ) ( ) ( )0,2
2
10,00)( bbbb rssrrr DbbDbDD ∆∆+∆+= εε (5.2) 

Then, according to the classical definition, the expected value of this function 
can be derived as  
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while variance is   
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Since this function is usually used for damage control, which in the 
deterministic case is written as 1≤D , an analogous stochastic formulation should 
be proposed. It can be done using some deterministic function being a combination 
of damage function probabilistic moments as follows:  

[ ]( ) 1)()( ≤≤ bb DgD kµ (5.5) 

where ( ))(bDkµ  denote some function of up to kth order probabilistic moments. 

Usually, it is carried out using a stochastic ‘envelope’ function being the upper 
bound for the entire probability density function as, for instance  

[ ]( ) [ ] )(3)()( bbb DDEDg k −=µ (5.6) 

This formula holds true for Gaussian random deviates only. It should be 
underlined that this approximation should be modified in the case of other random 
variables, using the definition that the value of damage function should be smaller 
than 1 with probability almost equal to 1; the lower bound can be found or 
proposed analogously. In the case of classical Palmgren-Miner rule (A5.45), with 
fatigue life cycle number N treated as an input random variable,  

N

n
D = , bN ≡ (5.7) 

the expected value is derived as follows [215]:  
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and the variance in the form of  
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It is observed that the methodology can also be applied to randomise all of the 
functions D listed in the appendix to this chapter with respect to any single or any 
vector of composite input random parameters. In contrast to the classical derivation 
of the probabilistic moments from their definitions, there is no need to make 
detailed assumptions on input PDF to calculate expected values and variances for 
the inversed random variables in this approach.  

Let us determine for illustration the number of fatigue cycles of cumulative 
damage of a crack at the weld subjected to cyclic random loading with the 
specified expected value and standard deviation (or another second order 
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probabilistic characteristics) of ∆σ. Let us assume that the crack in a weld is 
growing according to the Paris-Erdogan law, cf. (A5.26), described by the 
equation  

( ) 2
m

aYC
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da m
πσ∆= (5.10) 

and that Y≠Y(a). Then  
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which gives by integration that  
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Taking for N=0 the initial condition a=ai, it is obtained that  
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for 
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Therefore, the number of cycles to failure is given by  

β
1=fN

(5.15) 

The following equation is used to determine the probabilistic moments of the 
number of cycles for a crack to grow from the initial length ai to its final length af:
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Substituting for ∆K one obtains  
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By the use of a stochastic second order perturbation technique we determine the 
expected value of ∆N as  
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and the variance of number of cycles as 
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Adopting m=2 it is calculated using (5.17) and (5.18) that  
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and  
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The following data are adopted in probabilistic symbolic computations: 
[ ] MPa.E

minmax
010=σ−σ=σ∆ , ai=25 mm and obtained experimentally 

C=1.64x10-10, Y=1.15. The visualisation of the first two probabilistic moments of 
fatigue cycle number is done using the symbolic computation program MAPLE as 
functions of the coefficient of variation α(∆σ) and the final crack length af. The 
results of the analysis in the form of deterministic values, corresponding expected 
values and standard deviations are presented below with the design parameters 
marked on the horizontal axes. 

Figure 5.1. Deterministic values of fatigue cycles (dN)
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Figure 5.2. Expected values of fatigue cycles number (EdN)

Figure 5.3. Standard deviations of fatigue cycles number (sdN)

Especially interesting here is a comparison between deterministic analysis and 
expected values obtained for analogous input data. It is seen that the expectations 
are essentially greater than the deterministic output, which results from (5.17), for 
instance. The difference increases nonlinearly together with an increase in the 
coefficient of variation of the stress amplitude ∆σ. In the case of α(∆σ)=25% this 
difference is equal to about 20% of the relevant deterministic values. This result 
can be used as the safety factor which could be proposed for deterministic analysis 
as S=1.2 for an analogous range of random variability of the stress amplitude. 
Furthermore, it is seen that the final crack length is remarkably more decisive for 
fatigue cycle number (even in a random case) than the coefficient of variation of 
the stress amplitude.  

As shown in Figure 5.3, the variability of the examined standard deviation of 
∆σ is essentially different from that typical for deterministic and expected values. 
The influences of final crack length and input coefficient of variation are almost 
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the same for 25% increases of both parameters. Considering the above it can be 
concluded that the influence of the random character in fatigue cycle number is 
important in higher than first order probabilistic moments computations. It is clear 
that the presented symbolic computation methodology can be next exploited in the 
determination of stochastic sensitivity gradients of probabilistic moments of the 
fatigue cycle number with respect to particular random characteristics of the 
chosen input variables appearing in the fatigue life cycles formula. In particular, it 
will enable us to compare the sensitivity of various fatigue models with respect to 
the same parameters in which the sensitivity gradients are the most reasonable and 
realistic. The situation would be definitely more complicated if the variation of 
stress amplitude together with fatigue cycle number is analysed. Random 
fluctuations of ∆σ in time should be taken into account in this case and, therefore, 
∆σ(ω)=∆σ(ω,t) is to be considered as a resulting nonstationary random process.  

5.3 Computational Issues   

Since the deterministic equations are valid for the Monte Carlo simulation 
analysis as well, then the essential theoretical differences are observed in the case 
of perturbation based analysis. The corresponding fatigue-oriented SFEM model 
begins with the new description of the material properties, where the stiffness 
reduction approach can result in the following equations for the Young modulus, 
Poisson ratio and material density as well as spring stiffness for interface 
modelling  

( ))(1)( 0 nDene −= , ( ))(1)( 0 nDn −=νν
( ))(1)( 0 nDn −= ρρ , ( ))(1)( 0 nDknk −= (5.27) 

Therefore, the first two probabilistic moments for the Young modulus can be 
represented as  
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and up to the second order perturbation equations are rewritten in the incremental 
formulation as follows:  

• zeroth order 
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• first order 
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• second order  
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where the stiffness matrix perturbation orders are defined as  

∫∫
ΩΩ

Ω−+Ω=

=+=

dndBBnC

nKnKnK

jkikijklijijkl

con

,,
(.)

(.))((.))((.)

)1()(

)()()(

βαβα

αβ
σ

αβαβ

ϕϕσ
(5.33) 

so the dynamical structural response is given in the form  

)()1( (.)(.)(.) nqnqq βββ &&&&&& −+=∆ (5.34) 

The situation is more complicated when the crack phenomenon is considered 
apart from the material stochasticity and nonlinearity. In such a situation so-called 
direct methods are used or special purpose enriched finite elements with crack tip 
modelling can be applied alternatively. In the latter case, the displacements near 
the crack tip can be defined as  
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while the near field component fu can be rewritten as  
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where φ denotes the orientation angle of a crack, which is measured from the 
positive x axis, r and θ are polar coordinates with origin at the crack tip and 
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measured from the crack angle, G is shear modulus, while γ denotes νγ 43 −=  for 

plane strain problems or is equal to 
ν
νγ

+
−=

1

3
 for the plane stress analyses. The 

corresponding SFEM equations for displacements near the crack tip are rewritten 
using (5.36), while the stress intensity factors are computed using BEM or FEM 
techniques or, alternatively, are derived mathematically starting from stress 
equilibrium and displacement compatibility equations. The numerical results of 
SFEM analysis for composites with and/or without interface and volumetric 
microdefects are presented in [193,194], while in the case of the cracked medium 
they can be found in [33].  

Alternatively, the structural microdefects are modelled by spherical voids 
during the ductile type fatigue fracture. Let us assume that the total number of the 
microdefects is equal to Ma, their radius is denoted by Ra in the composite 
component indexed with a. Adopting further that both of them are functions of the 
fatigue cycle, the modified elasticity tensor components can be calculated using 
stiffness reduction of the Young modulus and Poisson ratio as follows:  
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The use of more advanced deterministic theories is known from the literature. 
However equivalent stochastic models are not available now. Similarly to a solid 
model with deterministic and stochastic microvoids, the stiffness reduction 
approach for cracked media can be applied as well [267]. The following material 
data are adopted for n=0: Young modulus Em=2.1 E11, Poisson ratio νm=0.3, 
expected value of microvoids radius E[r]=0.1 and standard deviation of microvoids 
radius σ(r)=0.01, expected value of microvoids total number E[M]=1 and variance 
of microvoids total number Var(M)=0. The Young modulus is taken with ±10%
deviations from the mean value the microvoid ratio variability is included in the 

interval [0,1.0]. Therefore an adequate visualisation of the component )(
1111

effC  can be 

obtained, cf. Figure 5.4.  
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Figure 5.4. Parameter variability of )(
1111

effC  for damaged homogeneous solid  

Analysing the effective tensor surface, the expected linear dependence of this 
tensor on the Young modulus is observed as well as the nonlinear dependence on 
the microvoid mean radius (greater sensitivity to geometrical parameters of the 
structural defects). If only the statistical information about the input parameters is 
available, then the elasticity tensor can be rewritten using its first two probabilistic
moments and introduced directly in SFEM analysis. If stochastic analysis in the 
elastoplastic range is necessary, the corresponding extension of the models 
presented in [355] can be applied. The microvoid volumetric ratio parameter is to 
be replaced with the two-parameter approach shown above and the probabilistic 
moments of these parameters are to be inserted as a function of the fatigue cycle.  

As was mentioned before, the main goal of the homogenisation procedure is to 
find effective material properties of the homogeneous material, equivalent to the 
original composite. The most simplified method is to use the spatial average as the 
homogenised property and it is still used in terms of effective mass density, which 
can be rewritten for the nth cycle of fatigue analysis as   

Ω
= )()()( nneff ρρ (5.38) 

Analogous homogenisation rule is applied in the case of heat capacity in transient 
heat transfer analysis and related thermoelastic or thermoelastoplastic coupled 
analyses of composites. The homogenisation of the elasticity tensor components is 
definitely more complicated and is usually carried out as  

( )
ΩΩ

+= )()()( )()( nnCnC klij
a

ijkl
eff

ijkl χσ ,    for i,j,k,l=1,2,3 (5.39) 

where )(nklχ  are the homogenisation function depending on the fatigue cycle.  
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The entire procedure can be applied for the fatigue analysis by rewriting the 
material properties of the composite components in terms of the current fatigue 
cycle number. Then, homogenising the constitutive law for each cycle, the whole 
composite fatigue can be modelled in a global scale, without the necessity for a 
very precise microscale discretisation or computational substructuring; an 
analogous analysis can be carried out for composite materials with cracks 
[336,337], for instance. It should be underlined that the described homogenisation 
procedure is sensitive to the RVE determination from the entire composite and to 
the scale parameter relating this element, dimensions to the dimensions of the 
entire composite. The formula for effective elasticity tensor is rewritten under the 
assumption that this parameter tends to 0, which is a very unrealistic model.  

Furthermore, the homogenisation procedure can be established for random 
composites, too, only if the randomness does not influence the periodic character 
of the composite (especially during the fatigue process). Then, either MCS [191] as 
well as SFEM [192] can be utilised for this purpose. Therefore, starting from 
probabilistic characteristics of the composite properties, the expected values, 
variances (or standard deviations) as well as higher order moments (in the 
statistical estimation only) can be computed.  

A very important issue from the technological point of view is the presence of 
the interface defects (usually with stochastic nature) appearing and growing 
between the composite components. Various computational models are proposed in 
this case in terms of special purpose spring finite elements or, alternatively, using 
the interphase as a new, separate material between the original composite 
components. This new material can be constructed from the original semicircular 
defects with random parameters, smeared (averaged probabilistically) over the 
entire interphase region according to the stochastic model introduced in Chapter 2; 
the composite with such an introduced interphase is then homogenised. To utilise 
the model for fatigue life cycle analysis, the geometrical and physical properties of 
the composite should be described in terms of the fatigue cycle number and then 
homogenised cycle by cycle for the needs of computational simulation of the 
composite.  
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5.3.1 Delamination of Two-Component Curved 

Laminates  

Let us consider a two-component elastic transversely isotropic material in 
two-dimensional space Ω defined by the polar coordinate system y={R,Θ} (cf. 
Figures 5.40-5.43). It is necessary to introduce the following relations:  
(a) the gap between two surfaces  

( ) ( ) ( )Θ−Θ=Θ ,,, )1()2( RuRuRg RR
(5.40) 

(b) the relative tangential slip of two surfaces 

( ) ( ) ( )Θ−Θ=Θ ΘΘ ,,, )1()2( RuRuRs (5.41) 

(c) the normal traction  

( ) ( ) ( )Θ−Θ=Θ ,,, )1()2( RRR RRR σσσ (5.42) 

(d) the shear traction  

( ) ( ) ( )Θ−Θ=Θ ΘΘΘ ,,, )1()2( RRR RRR σσσ , { }∞∈Θ=Γ=Γ ,0;: 0RRcc
(5.43) 

where R0 is the radius of the interface curvature. Since (5.40) - (5.43) are referred 
to the composite interface (cracked or joined) Γc (R=R0=const) only, then their 
radial dependence is neglected. The equilibrium problem of linear elasticity is 
given by the following equations system [95]:  

• equilibrium equations  
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where bR and bΘ denote the body force components;  
• strain-displacement relations  
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• constitutive relations  
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The following boundary conditions are employed:  

RR uu ˆ=    and   ΘΘ = uu ˆ  on uΓ (5.48) 

RR tt ˆ=    and   ΘΘ = tt ˆ  on σΓ (5.49) 

0)( =Θg ; 0)( =Θs ⇒ 0)(σR =Θ ; 0)( =ΘΘRσ  on Γc (5.50) 

0)( =Θg ; 0)( ≠Θs ⇒ 0)(σR <Θ ; )(σµ)( Θ=ΘΘ RRσ  on Γc (5.51) 

0)( >Θg ; 0)( =Θs  or 0)( ≠Θs 0)(σR =Θ , 0)( =ΘΘRσ  on Γc (5.52) 

0)( <Θg ; 0)( ≠Θs 0)(σR <Θ ; )(σµ)( Θ=ΘΘ RRσ  on Γc (5.53) 

( ) ( ))(ssign)(sign
R

Θ=Θσ  on Γc (5.54) 

where µ denotes the constant friction coefficient. Then, the near-tip stress field is 
described in the polar coordinate system as {x}={r,θ} (cf. Figure 5.6).  

Figure 5.5. Two-component curved laminate structure 
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x1=rcosθ

x2=rsinθ

Figure 5.6. Near-tip field  

It is assumed that both crack surfaces are modelled as perfectly smooth – there 
are no neither meso- nor micro-asperities on this surface in the context of the 
FEM contact model presented by [49,371,382], however application of the 
Boundary Element Method is also known, see [374]. Considering future particle-
reinforced composites delamination simulations, the 3D contact algorithms must be 
employed [284,322]. The asymptotic nature of the elastic fields near a transition in 
the boundary conditions (crack tip) is expressed by the analytic functions and 
therefore, the description of a near-tip stress for an interface crack between two 
different transversely isotropic in a plane stress problem and the traction-free 
crack surfaces is given as follows [301]:  

[ ]( ) ( ) [ ]( ) ),(2Im,2rRe 5.05.0i ∈Σ+∈Σ= −∈−∈ θπθπσ II
ij

iI
ijij rKrrK , (5.55) 

where i,j=1,2, ),( ∈Σ θI
ij , ),( ∈Σ θII

ij  are the angular functions derived using the 

Muskhelishvili potentials; ri∈ describes here the oscillatory stress singularity given 
as 

( ) ( )rirr i lnsinlncos ∈+∈=∈ (5.56) 

The angular functions correspond to the normal and in-plane shear tractions, 
respectively, on interface ahead crack tip (x1>0; θ=0) at a distance r given by 
[140,222]:  

( ) ∈−π=σ+σ i. rrK 50

1222
2i  or 

[ ]( ) 5.0
22 2Re −∈= rKr i πσ  and [ ]( ) 5.0

12 2Im −∈= rKr i πσ
(5.57) 

Moreover, the functions ),( ∈Σ θI
ij , ),( ∈Σ θII

ij  are related to the elastic properties of 

the bimaterial specimen using the oscillatory index ∈ given by  
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where the Kolosov constant κn is given as [158,259]  
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nn
ν−=κ 43  for the plane strain; n=1,2. (5.60) 

where νn and Gn denote the Poisson ratio and shear modulus of the nth component, 
respectively. Next, the elastic Dundur mismatch parameters are defined by  
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Then, it is possible to rewrite (5.58) in the following way: 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
−∈=

β
β

π 1

1
ln

2

1
(5.62) 

The fracture modes I and II [54] of the SIF in the case of an interface crack 
between dissimilar isotropic materials are now coupled together into the single 
complex SIF K=K1+iK2 uniquely characterising the singular stress field; K1 and K2

are the functions of a distance r from the tip and may be denoted as follows:  

( )∈= iKrrK Re)(1  and ( )∈= iKrrK Im)(2
(5.63) 

The associated relative crack surfaces displacements (∆ui=ui(r,θ=π)-ui(r, θ=-π)) at 
a distance r behind the tip (x1<0; θ=±π) are described in the following way:  
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Finally, the ERR for the crack propagation along the interface may be given as  
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where K =K1-iK2 is the conjugate complex SIF. It finally gives  
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which makes it possible to calculate the material interface toughness starting from 
the local stress field under critical load.

The main goal of the computational experiments is to simulate the delamination 
process of a two-component layered composite subjected to shear loading in the 
shear device. It is predicted that near tip behaviour and frictional stresses along the 
crack surfaces are the main parameters governing the ERR. Therefore, the FEM-

based numerical modelling of the delamination process is applied to get the 
accurate information about the following data: near-tip displacement and stress 
field description, normal stress distribution along the crack surfaces as well as the 
relation between the ERR and interface crack length.  

A two-component curved composite beam is analysed numerically under the 
following assumptions: (i) the interlaminar adhesive layer has zero thickness (no 
contribution to ERR), (ii) near-tip stress field is analysed in the same way as the 
straight crack, (iii) the crack propagates along the interface only (kinking of a crack 
out of the interface is not considered), (iv) kinematic friction along the crack 
surfaces is accounted for, (v) friction between supporting jigs and the specimen is 
neglected (liquid lubrication of the tested material surface is assumed). The 
material components are homogeneous isotropic and linear elastic (cf. Table 5.1); 
geometrical data are given in Table 5.2 and Figure 5.7.  

A FEM geometrical model is made from the three types of finite elements: 8-
node plane stress quadrilateral with out-of-plane thickness (5.0e-3 m) and 4 
integration points PLANE82 (structural solid), 3-node contact surface element 
with 2 integration points CONTA172 and 3-node target surface elements 
TARGE169. The last two element types simulate two essentially different kinds of 
material contact behaviour: flexible-to-flexible (between crack surfaces) and 
rigid–to-flexible (between the rigid curved device jigs and the curved specimen 
sides). For the present purposes, surface contact elements are more preferred than 
point-to-surface contact elements considering the curved geometry of a specimen 
and the requirements of a precise and detailed contact description as well as faster 
computational processing (smaller total number of contact finite elements). 
Moreover, target elements (CONTA172) simulating rigid curved jigs are modelled 
as longer than specimen curved sides (ΘT+1°) to prevent loss of the contact at the 
model edges during the loading process. Crack tip vicinity is modelled by the ring 
of 16 8-noded finite elements (cf. Figure 5.9) introduced around 6-node triangular 
elements (PLANE82). The required square-root singularity on the element sides is 
achieved by the motion of the midside nodes of crack tip elements into the quarter 
points. Size of the crack tip element ring is 5.0 E-06 m in the radial direction, 
which corresponds to 0.02% of the component thickness (the characteristic length 
of a composite specimen). The very dense discretisation (cf. Figures 5.8 and 5.9) 
makes it possible to analyse the near-tip stress zone where the singular stresses 
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dominate (in so-called K-dominance zone) with the length about 3% of the 
component thickness. 

Figure 5.7. Composite beam geometry  

Table 5.1. Material input data for FEM analysis  
Material 
No.  

Radial elastic  
modulus eR [GPa] 

Angular elastic 
modulus eΘ [GPa] 

Shear modulus 
G RΘ [GPa] 

Poisson ratio 
νRΘ

1 5.0 5.0 2.5 0.2 
2 10.0 10.0 5 0.3 

Table 5.2. Geometrical input data for FEM analysis  
Component thickness  
[m]

Total angle 
ΘT [deg] 

Interface plane radius  
R0 [m] 

Crack propagation 
range Θa [deg] 

h1 h2    
0.0025 0.0025 20 0.0525 <6-14> 

Figure 5.8. Crack tip zone discretisation Figure 5.9. Crack tip mesh 
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The propagation of a crack is modelled computationally by the change of the 
crack tip position under constant radius value R=R0. Thus, if the crack length 
increases during its propagation, the total number of elements and nodes increases 
as well as is comprised in the range between 2,302 and 2,878 finite elements (from 
6,225 to 7,825 nodes).  

The incremental nonlinear analyses (according to contact and friction) with two 
different boundary conditions (BC) and material configurations (cf. Table 5.3 and 
Figures 5.10 and 5.11) are performed to determine the influence of different load 
and material combinations on the contact between crack surfaces. The external 
loading is of static shear type and is applied in the form of displacement 
increments; the weaker component is loaded first.  

Table 5.3. Geometrical boundary conditions for the composite beam  
Case 1 Case 2 
(i) Θ=ΘT and R∈〈R0, R0+h1〉: uR=0  
(ii) Θ∈〈-1°, ΘT〉, R=R0+h1: uR=uΘ=0
(iii) Θ∈〈0°,ΘT+1°〉, R=R0-h2: uR=0; uΘ=u~

(iv) Θ=0° and R∈〈R0-h2, R0〉: uΘ=u~

(i) Θ=ΘT and R∈〈R0-h2, R0〉: uR=0  
(ii) Θ∈〈-1° ΘT 〉, R= R0-h2: uR=uΘ=0
(iii) Θ∈〈0°, ΘT +1°〉, R=R0+h1: uR=0; uΘ=u~

(iv) Θ=0° and R∈〈R0, R=R0+h1〉: uΘ=u~

Figure 5.10. Model BC (case 1) 

Figure 5.11. Model BC (case 2) 

Frontal solver implemented of the ANSYS is used to solve the problem using the 
full Newton-Raphson iteration technique (stiffness matrix updated each time) 
together with the additional convergence enhancement tools: predictor-corrector 
and the line search options. The standard unilateral contact is modelled (pressure is 
equal to zero during separation) as well as one-pass contact (asymmetric contact) 
to obtain the equilibrium solution of contact tractions by means of the augmented 
Lagrangian method (iterative series of contact stiffness are updated for the contact 
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stresses computation). Moreover, the unsymmetrical tangent stiffness matrix is 
used to derive of contact tractions what improved solution convergence in 
comparison with the symmetric tangent stiffness matrix approximation algorithm. 

The cracks are closed on almost the entire length under applied shear loading, 
which results in sliding and sticking behaviour of the composite. Nevertheless, it is 
observed that in the case of weaker material loading, the area around the crack tip 
is opened which makes it possible to use the LEFM oscillatory theory of interfacial 
cracks in the ERR calculation. The length of the opened crack tip zones remains 
constant during crack propagation (about 1-2% of the total crack length, cf. Figure 
5.12), while the crack opening maximum values are different for various crack 
lengths. It may be due to the change of the crack tip loading direction during crack 
propagation process. Moreover, the zero value of a crack opening shown in Figure 
5.12 corresponds to sliding contact behaviour of the composite, which takes place 
in 98-99% of the crack length measured from the specimen edges; the asymptotic 
behaviour of stress is shown in Figure 5.13. The values of stresses depend 
asymptotically on the very high stress values up to values about 5 orders smaller 
and which are never equal to zero. Further, the oscillatory stress singularity is 
slightly influenced by the increasing friction coefficient µ and for extremal case 
(µ=1.0) the stress exponent is equal to λ=0.494.  

Next, asymptotic behaviour of stress in the case of a completely closed crack 
(loading of stiffer component) is analysed in Figure 5.22. The extremal values of 
stresses (crack tip stress values) are considerably influenced by the friction 
coefficient increase and differ by about one order for µ=1. In this case the exponent 
λ depends on the friction coefficient µ and the interface fracture mechanics idea for 
the opened crack is no longer applicable. However, it is possible to calculate 
numerically the ERR for a closed crack with friction by means of the technique 
proposed in [292] using the FEM analysis [24], but here only the opened crack 
model is analysed. As can be expected, the stress tensor components around the 
crack for the test without the friction are essentially greater than those typical for 
the composite contact problem with a non-zero friction coefficient. It reflects the 
fact that some part of the internal strain energy is dissipated by the friction 
phenomenon in the second case, cf. Figures 5.14-5.21.  

Figure 5.12. Crack opening displacement (case 1; µ=0.5)  
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Figure 5.13. Near-tip stress dependence on µ (opened crack tip)  

Figure 5.14. Near-tip stresses σrθ [Pa] (µ=0.5)  
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Figure 5.15. Near-tip stresses σrθ [Pa](µ=0) 

Figure 5.16. Near-tip stresses σr [Pa] (µ=0.5) 
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Figure 5.17. Near-tip stresses σr [Pa] (µ=0) 

Figure 5.18. Near-tip stresses σrθ [Pa] (µ=0.5) 
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Figure 5.19. Near-tip stresses σrθ [Pa] (µ=0) 

Figure 5.20. Near-tip stresses σr [Pa] (with µ=0.5) 
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Figure 5.21. Near-tip stresses σr [Pa] (µ=0) 

Figure 5.22. Near-tip stress dependence on µ (closed crack tip)  
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obtained in conjunction with constant value of µ, results in a uniform frictional 
stress σΘ along the crack surfaces according to Coulomb law. The part of the crack 
surface with quasi-uniform normal stress distribution increases together with the 
crack length increase as follows: 3.44E-3 m (6°), 7.33E-3m (10°), 8.93E-3 m (14°) 
for Figure 5.21 and 3.89E-3 m (6°), 5.04E-3m (10°), 8.93E-3 (14°) for Figure 6.22. 
It is reasonable because of the greater non-uniform deformation of the composite 
edges (due to BC) decreases with respect to the entire crack length during its 
propagation.  

Figure 5.23. Normal stress distribution along the crack surface (case 1; µ=0.5)  

Figure 5.24. Normal stress distribution along the crack surface (case 2; µ=0.5) 

The variable ERR is a function of the interface crack length and is computed 
for two different friction coefficients (µ=0 and µ=0.5). As is expected, a large 
decrease in ERR value follows the friction coefficient increase (cf. Figure 5.25). 
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For the shortest crack length (amin=5.5E-3 m) the ERR takes value 1.54E-3 kJ/m2

(µ=0) and 1.03E-3 kJ/m2 (µ=0.5), while for the longest crack length (amax=1.282E-
2 m) the ERR value is equal to 8.71E-4 kJ/m2 (µ=0) and 3.48E-4 kJ/m2 (µ=0.5). 
Therefore, during the crack propagation from 5.5E-3 to 1.282E-2 m, the total 
amount of energy dissipated due to friction is comprised between 33 and 60% of 
the ERR value in the frictionless case. Moreover, the crack extension is stable 
(ERR decreases together with an increase of interface crack length), which means 
that a higher load should be applied to keep the growth of a crack. However, a 
friction phenomenon has a stabilising effect on the fracture process, which speeds 
up the ERR decrease together with crack length in comparison to a frictionless 
behaviour. Then, the quasi-stationary tendency of the ERR is observed for a certain 
crack length (a>1.1E-2 m) in frictional (from 3.9E-4 to 3.48E-4 kJ/m2) and 
frictionless (from 9.06E-4 to 8.71E-4 kJ/m2) cases. The stationary region of ERR 
may imply uniform crack tip load which would make it possible to determine 
experimentally the force responsible for delamination only; further analysis 
indicates the mode mixing of the fracture process. The shear mode prevails over 
the tensile mode of the ERR but the shear/tensile mode ratio (ERR2/ERR1) 
increases from 2.78 (amin) to 2.88 (amax) for µ=0 and decreases from 2.55 (amin) to 
2.45 (amax) for µ=0.5. Although the friction influences both contributions of the 
ERR (ERR1 and ERR2), the ERR shear mode ERR2 is more reduced by the 
frictional stresses along the crack surfaces due to its direction during interface 
crack extension than the ERR tensile mode ERR1.  

Figure 5.25. Energy release rate comparison  
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Figure 5.26. ERR contributions (µ=0)  

Figure 5.27. ERR contributions (µ=0.5) 

The computations are performed on a single processor machine (700 MHz) 
with 256 MB (RAM) memory; the computer processing time (CP) and cumulative 
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lengths for the 20th loadstep of the displacement increment.  
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of the curved model geometry. Thus, it is possible to point out that the critical 
crack length maximising CP and CNI exists and is equal to about Θa=10°.  

5.3.2 Fatigue Analysis of a Composite Pipe Joint  

A deterministic computational model of fatigue crack-like damage propagation 
in the composite pipe joint is introduced here and examined numerically using the 
FEM program ANSYS. The studies dealing with the other pressure vessels like 
longitudinally cracked pipes can be found in [142,218]. The model is built upon 
the following assumptions cf. [97,157,205,211,376]: (a) material components are 
linear elastic, (b) possible defect nucleation and growth is located within the 
adhesive layer and is caused by the high stress concentrations, (c) no initial 
manufacturing flaws, pre-cracks or other defects are assumed in the original 
adhesive layer (before the beginning of the fatigue loading process), (d) there are 
no microdefects forming and next coalescence during composite tension (typical 
for metallic materials) apart from crack formation and propagation, (e) the cyclic 
load has constant amplitude and (f) fatigue crack-like damage propagation is 
stable.  

The stresses along the adhesive layer length are not uniform and their gradients 
arise at joint edges, which results from extension of the specimen layers in the 
opposite directions (composite pipe and coupling), cf. Figure 5.28. Then it is 
assumed that defects start to grow longitudinally along the adhesive layer and 
uniformly over all pipe circumference, under applied tensile load σapp, when the 
resulting average shear stress 〈τad〉 over some distance d from the high stress 

concentration region is equal to or greater than the shear static strength u
adτ  in 

adhesive layer. This criterion is expressed by the following equation:  

u
ad

d

Aadad dX
d

τττ ≥= ∫
0

1
(5.69) 

The formula (5.69) is called the average stress criterion after it was applied to 
notched strength prediction of laminated composites under uniaxial tension; a 
graphical representation of this criterion is shown schematically in Figure 5.28. 
The distance d is called the characteristic length and can stand for the damage 
accumulated or a nonlinear process zone. It is expressed here in terms of the 
critical fracture mechanics parameter as the critical Stress Intensity Factor (KIIc)
and shear strength of the adhesive layer as  

2

2

1
⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

u
ad

IIcK
d

τπ
(5.70) 
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Since (5.70) is based on the assumption of the square-root stress singularity in 
the front of the sharp crack tip, it does not precisely represent the stress distribution 
in the tubular adhesive layer in the stress concentration region. However, this 
characteristic length serves to estimate upper bound on the finite element size at 
the crack-like damage tip.  

Figure 5.28. Pipe-to-pipe adhesive connection: 3D and 2D views 

Then, it is postulated that after the crack-like defect had nucleated, it steadily 
propagates along the adhesive layer as the main single crack leading to an average 
stress increase over the distance d along with the number of load cycles N as  

( ) ( ) ( )
( )∫∫ −

⇒=
d

A
ad

d

Aadad dX
ND

N

d
dXN

d
N

00 1

11 τ
ττ (5.71) 

where D(N) denotes the classical scalar damage variable, which may be written in 
terms of the nucleated and propagating main crack a as follows:  

( ) ( )
al

Na
ND = (5.72) 

The defect propagation terminates according to the condition   

( ) ( ) alNaND =⇔= 1 (5.73) 

which corresponds to the loss of stiffness for all those finite elements in the 
adhesive layer that are placed on the crack propagation path.  

- stress concentration regions 
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X
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〉
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The boundary differential equation system, which describes fatigue defect 
propagation along the adhesive layer of a composite pipe joint may be defined over 
the pipe element of length dla(N)=dXA-da(N) as follows:  
(i) equilibrium and damage equations  

( )NdFdF adp =  and ( )NdFdF adc = (5.74) 

( ) ( ) ( )NdlDNDDd aopadipopp πτπσ =− 22

4

(5.75) 

( ) ( ) ( )NdlDNDDd aicadicocc πτπσ =− 22

4

(5.76) 

(ii) constitutive relations  

( ) p

Ap

ENdl

dw σ
=  and ( ) c

Ac

ENdl

dw σ= (5.77) 

( ) ( )
ad

cpad
ad t

G
N

γγ
τ

−
= (5.78) 

(iii) boundary conditions  

( ) p

app

LX

p

ENdl

dw

A

σ
=

=

 and ( ) c

app

X

c

ENdl

dw

A

σ
=

=0

(5.79) 

( ) 0
0

=
=AX

p

Ndl

dw
 and ( ) 0=

=LX

c

A
Ndl

dw
(5.80) 

where Fp, Fad, Fc represent internal axial forces in a pipe, adhesive layer and 
coupling, respectively, internal axial stresses in the pipe, adhesive and coupling are 
denoted by σp, τad and σc. Let us assume that Ep, Ec and Gad are the axial modulus 
of the pipe, elastic modulus of the connecting layer and the adhesive shear 
modulus; wp and wc denote pipe and coupling axial displacements. This problem is 
now solved numerically for the pipe and coupling shear strains cp γγ ,  and 

adhesive shear stresses ( )Nadτ .

The main purpose of further computational studies is a prediction of crack 
damage propagation rate per a cycle in the composite pipe joint subjected to the 
pure tension fatigue load with the load time variations shown in Figure 5.29 (each 
load cycle is divided into two time intervals of 6 months). The cycle asymmetry 
ratio R is equal to 0, while the load amplitude is equal to the applied maximum 

load ( app
maxσ ). Since quasistatic fatigue load is applied, no frequency effect is 

therefore considered here.  
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Let us note that the axis symmetry of the composite pipe joint results in 
simplification of the entire computational model and essentially speeds up the 
analysis process - only half of the composite pipe joint in the axial direction is 
considered only. The final computational model geometrical data to the FEM 
displacement-based commercial program ANSYS [2] are shown in Figure 5.30. 
The pipe and coupling component are made up of E-glass/epoxy composite (50% 
fibre volume fraction) and the adhesive layer (rubber toughened epoxy). All 
material properties of the composite pipe joint components are listed in Table 5.5.  

Figure 5.29. Applied fatigue load  Figure 5.30. Computational model 

The axisymmetric FEM analysis is carried out using four node finite elements 
PLANE42 of three translational degrees of freedom (DOF) (u,v,w) at each node. 
The model mesh is made to obtain greater density in high stress concentration 
regions (at both edges of the adhesive layer) - in this region the finite element size 
was equal to the process zone d given by (5.70). During loading process, the 
average value of the shear stress component computed by ANSYS in the finite 

element is compared to the static shear strength ( u
adσ ) of the adhesive layer. After 

this value had been exceeded within a finite element, then finite element stiffness 
was multiplied by the reduction factor equal to 1×10-6, and the element was 
deactivated, until analysis was terminated.

Table 5.5. Material properties of the model  
Property Rubber toughened epoxy (joint) E-glass/epoxy 
Longitudinal modulus [GPa] 3.05 45 
Transverse modulus [GPa] 3.05 12 
Shear modulus [GPa] 1.13 5.5 
Poisson ratio 0.35 0.28 
Shear strength [MPa] 54 70 
Tensile strength [MPa] 82 1020 
Fracture toughness GIc [kJ/m2] 3.4 - 
Fracture toughness GIIc [kJ/m2] 3.55 - 
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Supposing that the shear mode of failure is dominating in the problem, several 
different failure modes may occur in composite pipe joints subjected to the tensile 
static load. That is why the distribution of stresses within the pipe, adhesive layer 
and coupling was analysed first to find out whether the shear stresses are the most 
decisive stress components for failure initiation within the adhesive joint or not. 
For the pipe joint geometry considered (cf. Figure 5.30), the computations 
predicted the bonding failure is dominated by the shear stresses, while other stress 
components (orthogonal and parallel) values were at least one order smaller. These 
results excluded other modes of failure for this specific model and load amplitude 

app
maxσ =270 MPa and, finally, confirmed appli cability of failure criterion (5.69).  

a – A=216 MPa 

                                                                                                            b – A=243 MPa 

                                                                                                            c – A=270 MPa 

                                                                                                            d – A=405 MPa 

                                                                                                            e – A=540 MPa

Figure 5.31. Crack-like damage growth under various amplitude fatigue loading  
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Figure 5.32. Crack-like damage growth per cycle  
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Figure 5.33. Fatigue constants estimation  

The crack-like damage evolution in the adhesive layer is presented for five 

different load amplitudes A= app
maxσ =216, 243, 270, 406 and 540 MPa as a function 

of load cycles. Those load amplitude values correspond to 4× u
adτ , 4.5× u

adτ , 5× u
adτ ,

7.5× u
adτ  and 10× u

adτ , respectively. They were chosen to find out the load 

amplitude effect on a composite pipe joint. Since below an applied load amplitude 
A=216 MPa no damage nucleation was observed, then this load value may be 
assigned to the load threshold, Ath. The tendency of longitudinal crack-like 
damage propagation was obtained from the computer analysis as the difference 
between crack-like damage tip at Nth and (N-1)th cycle. The crack-like damage 
tip position was chosen to be the centroid of the finite element with reduced 
stiffness. Since the crack-like damage growth occurred from two opposite sides of 
the joint, thus two extreme longitudinal positions of the crack damage tips were 
considered and summed up to give a single crack-like damage value, as shown in 
Fig. 5.31. It is shown that an increase of amplitude resulted in a decrease of the 
load cycles were required for the final failure.  

Then, the results from Figure 5.31 were used to calculate a mean crack-like 
damage propagation rate [mm/cycle] as a function of the applied mean fatigue-like 
load, calculated from (6.81) with the results shown in Figures 5.32 and 5.33.  

A relation between the mean crack-like damage propagation rate and the 
applied mean stress is presented in Figure 5.33. The logarithmic form was taken in 
order to obtain coefficients α=2.3591 and β=-12.132 of the function 

( ) βα += )ln(ln ba . The final relation between the mean crack damage 

propagation rate and the applied mean stress is given by the following equation:  
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( )( )[ ]me
dN

da

m

σln0.235910.121320101 4 +−× −
=⎟

⎠
⎞⎜

⎝
⎛ (5.82) 

The usage of (5.82) makes it possible to estimate the mean crack damage 
propagation rate under applied mean fatigue load, although it should be compared 
with other computational approaches to the problem or the relevant experimental 
results. For composite containing different material properties, it would be 
necessary to repeat all numerical procedures carried out here, because α, β are 
load- and material-dependent constants.  

In order to present stress distribution during crack-like damage propagation, 
shear stresses are plotted for different load cycles in Figures 5.34-5.38. These 
stresses were determined as a function of the joint length in the middle of the 
adhesive layer thickness. The crack-like damage tips on both sides of a joint are 
denoted by ‘A’ and ‘B’. It is shown that shear stresses at the crack-like damage 
tips increase along with load cycle number, as was expected. It is caused by the 
fact that the load transfer area from pipe to coupling decreases. The crack-like 
damage propagation is initially the same for both tips ‘A’ and ‘B’ and supported by 
similar shear stress magnitudes. Then, the shear stress magnitude changes and it is 
different at opposite crack damage tips. It probably results from the non-uniform 
extension of the crack damage across the remained adhesive layer. It is necessary 
to mention that the lower part of the pipe overlapped coupling before the failure, 
which does not demonstrate a realistic situation, where pipe and coupling would 
slide over each other.  

The tendency of fatigue crack propagation was also inspected under different 
failure conditions utilising the concept of the average stress criterion. That is why 
the average orthogonal and parallel stresses were compared with relevant strength 
values for different amplitudes of the applied load. Computations revealed that it 
would be necessary to modify failure criterion, given by (5.69) to predict fatigue 
life as a combination of the average shear stress with average longitudinal tensile 
stress in case when applied load amplitude is higher than σmax>406 MPa.  
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Figure 5.34. Shear stresses in undamaged adhesive layer 

Figure 5.35. Shear stresses in adhesive layer after 1 cycle (1 year)  
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Figure 5.36. Shear stresses in adhesive layer after 2 cycles  

Figure 5.37. Shear stresses in adhesive layer after 5 cycles  
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Figure 5.38. Shear stresses in adhesive layer after 9 cycles  

Computations presented above are performed using 2,606 finite elements (254 
in the adhesive layer); some numerical examples have been undertaken in order to 
estimate the total finite element number effect on the results. It was assumed that 
finite element number in the adhesive layer may only influence results by only. 
Thus the vertical mesh division effect was studied first with 400, 800, 1200, 1600, 
2,000 and 4,000 finite elements, respectively. The results became independent 
from the decreasing finite element size (cf. Figure 5.39), while the critical finite 
element size for which results did not change was equal to le≈0.0001 m. It 
corresponds to about 250 vertical mesh divisions of the considered adhesive layer 
length.  

Figure 5.39. Fatigue life sensitivity to the finite elements number in adhesive layer  
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Numerical results presented in Figure 5.40 show that the finite element size 
simulating characteristic length d should be much smaller than those approximated 
by (5.70) and should be equal to d≈0.0007 m. Similar comparative study was 
carried out for different horizontal divisions and they demonstrated a rather small 
mesh effect on fatigue life prediction, which oscillated in that case between 8.4 and 
8.6 load cycles number (cf. Figure 5.39).  

Figure 5.40. Fatigue life sensitivity to the finite elements number in adhesive layer 

For the geometry of the model considered here, its finite element mesh of the 
adhesive layer should be designed using 5 × 250 elements (horizontal × vertical) in 
order to avoid a finite element mesh effect on the life prediction. Finally, it is 
suggested to solve numerically the problem by finite elements possessing a greater 
number of nodal degrees of freedom (nodal translations and rotations) such as shell 
finite elements, for instance, to improve the accuracy of the computational model.  

The numerical approach proposed here enables efficient estimation of fatigue 
crack damage evolution rate in the composite pipe joint subjected to varying tensile 
load. This approach may be especially convenient in fatigue life prediction for the 
structures with high stress concentration regions, where internal stresses even 
under applied fatigue loading may be high enough to overcome material or 
component static strength. Qualitative numerical comparison of the fatigue crack 
damage evolution rate can be elaborated by the FEM displacement-based using 
cohesive zone fracture mechanics tools. In this case the damage of adhesive layer 
can be represented by a single crack model and crack evolution can be numerically 
determined e.g. through common spring finite elements, interface finite elements 
or solid finite elements with embedded discontinuity defined using the condition 
for a critical energy release rate growth.  
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5.3.3 Thermomechanical Fatigue of Curved 

Composite Beams 

A two-component composite material with volume Ω is considered in the plane 
stress in an initially unstressed, undeformed and uncracked state, where its two 
constituents (Ω1, Ω2) are linear elastic and transversely isotropic materials; the 
effective elasticity tensor of the composite domain Ω is uniquely defined by their 
deterministic Young moduli and Poisson ratios. The problem is focused as before 
on the composite interface where a pre-crack of length ao is introduced. Both 
crack surfaces are assumed to be perfectly smooth – there are neither meso- nor 
micro-asperities on their surfaces in the context of a contact model. The constant 

amplitude fatigue load ijσ  is applied with the coefficient of a cycle asymmetry 

max
ij

min
ijR σσ= . The stress field under applied general transverse load at the crack 

tip is described by (5.57).  
 Now, let us analyse the fatigue phenomenon for such an interface 
[77,109,291,295], which results from thermo-mechanical external load cycles 
applied at the composite specimen [93,96]. Analogous to the classical Paris-
Erdogan equation used to describe the fatigue crack growth rate in metals, its 
modified version is used  

( )qGc
dN

da ∆= (5.83) 

where c and q are some material constants determined experimentally. The energy 
release rate (ERR) range is described here as follows:  

minmax GGG −=∆ (5.84) 

with maxG  and minG  calculated for a certain applied load max
ijσ  and min

ijσ ,

correspondingly. A quite similar fatigue analysis may also be applied in the case of 
thermal cycling or coupled thermomechanical fatigue analysis. However, it is 
necessary to apply the following equation to calculate the ERR range during 
periodic temperature variations:  

( ) ( )maxmin TGTGG −=∆ (5.85) 

where Tmin and Tmax are minimum and maximum temperatures for a given thermal 
cycle. The modified Paris-Erdogan equation (5.83) is used to estimate the number 
of fatigue cycles required for the steady state crack growth from an initial 
detectable precrack ao to its critical length acr. It is assumed that once the critical 
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crack length is reached, the crack grows continuously leading to the material 
failure by a delamination; this assumption determines the entire mechanism of a 
fatigue fracture of this particulate composite. Since that, the following fracture 
criterion is proposed:  

cri
ii

ii

da
aa

aa

GG

da

dG =⇒>
−
−

= +
+

+

→ 1
1

1

0
0lim  and Gi+1≥1.05Gi

(5.86) 

The 5% factor is used in (5.86) to prevent instabilities of crack propagation and 
which is based on some computational observations presented later. On the other 
hand, if the ERR is less than the threshold value Gth, then no crack growth is 
observed.  

Figure 5.41. Composite FEM model  

Figure 5.42. Mechanical boundary conditions  
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Moreover, it is possible to describe micro-crack density by the damage 
function as D=a/acr. In this case this function may be used to calculate the effective 
stress tensor for a cracked body as follows:  

( )
cr

crij
eff
ij)cr(eff

ij
a

aa

D

−
=

−
=

σσ
σ

1
(5.87) 

where eff
ijσ  denotes the effective stress tensor of the initially perfectly bonded 

composite under applied load, which can be calculated by the classical 
homogenisation or mechanics of composite materials theory. Then, the effective 
stress tensor of a cracked body is estimated from (5.87) and is compared to the 
effective strength of a two-component curved composite. 

The main purpose of computation is to estimate the number of load cycles 
required to composite fatigue failure by delamination as a function of the friction 
coefficient. The composite thermal cycling is simulated numerically to observe 
fatigue crack growth under non-mechanical loading. The analysis consists of the 
following steps in order to evaluate these parameters: (i) determination of the near-
tip stress distribution under applied load (FEM analysis); (ii) evaluation of total 
ERR (and its contributions) as a function of the interface crack length and the 
friction coefficient; (iii) calculation of ERR range and (iv) determination of fatigue
cycles to failure.  

The composite FEM model for computer analysis is presented in Figures 5.41 
and 5.42 - two linearly elastic transverse isotropic homogeneous components with 
the geometry parameters and material properties collected in Tables 5.6 and 5.7 are 
analysed.  

Table 5.6. ANSYS geometrical input data  
h1 0.0025 Component thickness [m] 
h2 0.0025 

Total angle ΘT [deg]; aT [m] 20; 1.83×10-2 

Interface plane radius Ro [m] 5.25×10-2

Pre-crack ΘT [deg]; ao [m] 6; 5.5×10-3

Table 5.7. ANSYS input material properties 
Property Boron/epoxy Aluminium 7075-T6 

Density [kg/m3] 2000 2810 
Young modulus [GPa] 207 70.8 

Poisson ratio  0.21 0.33 
Shear modulus [GPa] 4.8 26.9 

CTE [1/°C] ×10-6 4.5 23.4 
Conductivity [W/m°C] 14.7 130 
Heat capacity [J/kg°C] 1150 960 

The composite specimen is discretised in the FEM analysis using from 2,172 to 
2,908 finite elements and from 5,863 to 7,879 nodal points to simulate the interface
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crack propagation. The crack length change is equal to 0.5deg (0.9×10-4m). The 
very dense model discretisation around the crack tip needs a large effort for the 
singular near-tip stresses behaviour simulation. The elements used for model 
discretisation are 8-node plane stress solid elements PLANE82 (mechanical 
analysis) with 4 integration points and 8-node thermal solid elements PLANE77 
(thermal analysis) with 9 integration points. Two-dimensional (2D) contact 
(CONTA171) and target (TARGE169) finite elements are used to simulate the 
contact with friction between crack surfaces and frictionless contact between 
external supports and model edges; the contact finite elements have 3 nodes and 2 
integration points, while target finite elements are defined using 3 nodes. The 
numerical problem to be solved is geometrically nonlinear taking into account 
elastic contact with friction or frictionless elastic contact - that is why an 
incremental analysis is applied. The contact traction computation is possible thanks 
to the augmented Lagrangian technique with contact stiffness matrix 
symmetrisation. This technique as a combination of the two main constraint 
methods (penalty and Lagrange multiplier) is chosen in conjunction with 
predictor-corrector and the line-search numerical options to ensure satisfactory 
solution convergence.  

The applied fatigue load is chosen as a compressive shear of 1.75 kN (138 
MPa) with the cycle asymmetry factor R=0.017. It is observed that the shear 
contribution to the total ERR prevails (∆G2≈∆GT) over tensile mode under the 
given fatigue load. Since the shear mode dominates, the ERR is taken from the 

range min
2

max
2 GGG −=∆  only and its dependence on the friction coefficient is 

shown in Figure 5.43. The values of ERR range vary together with the coefficient 
of friction from 147 (ao=5.49×10-3 m) to 183 J/m2 (al=1.28×10-2 m) for µ=0 and 
from 108.4 (ao) to 103.4 J/m2 (al) for µ=0.15. The energy dissipated due to friction 
results in a reduction of the ERR and alters the tendency of crack propagation - it 
stabilises the fracture process.  

That is why the critical crack lengths corresponding to the lowest values of 
friction coefficients are equal to acr=5.2 mm for µ=0.0 and µ=0.01, which are 
smaller than those obtained for µ>0.01 and equal to acr=7.4 mm. Thus, the number 
of cycles to composite failure by delamination is based on the critical crack length 
criterion and is calculated from (5.83). The parameter q=10 and the ERR threshold 
∆Gth=100 J/m2 are applied together with the parameter c=1×10-26. The results of 
the composite life prediction are shown in Figure 5.44 – we observe there that the 
friction coefficient increases strongly and decreases the crack growth rate per cycle 
which finally leads to composite fatigue life improvement, under the assumption 
that interface delamination does not bring about other damage processes such as 
wear, for instance. Finally, the number of fatigue cycles to composite failure are 
estimated to be Nf=61,865 cycles for µ=0 and Nf=5.067040×106 cycles for µ=0.14.  
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Figure 5.43. Energy release rate range during fatigue crack growth  

Figure 5.44. Composite mechanical fatigue life  
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Figure 5.45. Initial temperature conditions  

Figure 5.46. Thermal cycling  

Figure 5.47. Temperature distribution (1st cycle, T=+71°C)  

Figure 5.48. Temperature distribution (1st cycle, T=-54°C)  
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Figure 5.49. Temperature distribution (25th cycle, T=+71°C)  

Figure 5.50. Temperature distribution (25th cycle, T=-54°C)  

Figure 5.51. Temperature distribution (50th cycle, T=+71°C)  

Figure 5.52. Temperature distribution (50th cycle, T=-54°C)  
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Figure 5.53. Temperature distribution (75th cycle, T=+71°C)  

Figure 5.54. Temperature distribution (75th cycle, T=-54°C)  

Figure 5.55. Temperature distribution (100th cycle, T=+71°C)  

Figure 5.56. Temperature distribution (100th cycle, T=-54°C)  

Computational thermal cycling is carried out for the composite specimen in the 
temperature range Tmax=+71 and Tmin=-54 - thermal boundary conditions are 
presented in Figures 5.44 and 5.45. First of all, the stationary thermal analysis is 
worked out to introduce the initial conditions for temperature distribution (cf. 
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Figure 5.44). Then, thermal cycling is carried out thanks to the non-stationary 
thermal analysis implemented in the program ANSYS. The number of simulated 
fatigue cycles is taken as 10 E5 cycles for +71/-54°C and corresponds to the total 
time t=252,000 s, where ∆t=1260 s is used in numerical analysis as an incremental 
time step. As is shown later, the fatigue crack growth after 100 cycles is very small 
and equal to ∆a=3×10-6 m. Therefore, the analysis is carried out for the initial crack 
length ao=5.5×10-3 m. Initially, the temperature has almost the same value in all 
composite regions. Then, the difference in temperature increases together with the 
number of thermal cycles, and even temperatures with opposite signs are observed 
in opposite composite regions (upper and lower component). It is predicted that the 
near-tip stress range can be reduced if the temperatures of opposite signs appear on 
either side of the composite interface.  

The temperature distribution over the laminate cross-section is presented for 
25, 50, 75 and 100 cycles in Figures 5.49-5.56 for two temperatures mentioned 
above. Comparing Figures 5.47, 5.49, 5.51 and 5.53 illustrating the temperature 
distributions for greater initial temperature at the bottom of a laminate, it is seen 
that the minimal temperature is decreasing together with an increase of the fatigue 
cycle number (a composite is frozen during a fatigue analysis). Quite the opposite 
observation can be made for T=-54°C (cf. Figures 5.48, 5.50, 5.52, 5.54 and 5.56). 
The maximal temperature increases from T=-53.5°C (for 1st cycle) to about 12°C
which means that the composite is heated during the delamination process. For 
both initial temperatures at the bottom of a structure, spatial distributions of 
temperature gradients are exactly the same.  

The results of non-stationary analysis give an input for a mechanical analysis 
carried out for a composite model subjected to zero external mechanical loads. 
However, the composite is circumferentially fixed by the target finite elements and 
on the left side of the upper component by the supports. This coupling makes it 
possible to analyse the thermal stresses in a composite and further, to determine the 
ERR range. As was noticed before, the near-tip stress range is reduced during 
thermal cycling.  

The equivalent thermal stresses σ(th-eqv) distributions around the crack tip are 
shown in Figures 5.57-5.62 for an initial crack length (ao) at the upper and lower 
limit temperatures (+74°C and –54°C). Thermal stresses range is reduced 
from ∆σ(th-eqv)=-1000 MPa (after the 1st cycle) to -930 MPa (after 100 cycles).  
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Figure 5.57. Thermal equivalent stress σ(th-eqv) [Pa] (1st cycle; +71°C)  

Figure 5.58. Thermal equivalent stress σ(th-eqv) [Pa] (1st cycle; -54°C)  
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Figure 5.59. Thermal equivalent stress σ(th-eqv) [Pa] (50th cycle; +71°C)  

Figure 5.60. Thermal equivalent stress σ(th-eqv) [Pa] (50th cycle; -54°C)  
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Figure 5.61. Thermal equivalent stress σ(th-eqv) [Pa] (100th cycle; +71°C)  

Figure 5.62. Thermal equivalent stress σ(th-eqv) [Pa] (100th cycle; -54°C)  
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Figure 5.63. Contact pressure along the normalized crack length  

Comparing these figures it can be noticed that thermal equivalent stresses are 
generally greater for greater initial temperature. Further, as can be expected, the 
maximum value of these stresses for both temperatures decreases together with an 
increase of the fatigue cycle number. Next, it is observed that material deformation 
at the upper temperature limit (+71°C) led to crack surface contact the over total 
crack length, while at the lower temperature limit (-54°C) the crack surfaces are 
opened along almost the entire crack length with the closed region near the 
specimen edge acl=1.14×10-3 m; it can be observed in Figure 5.63, where the 
contact pressure distribution along crack surfaces is presented after the 1st and 100th

thermal cycle; a region characterised by the contact pressures σR=0 MPa 
corresponds to the crack opening. The normalised crack length equal to 0.3 is 
referred to the crack tip position, where the contact pressure at T=+74°C is reduced 
by about 10% after 100 thermal cycles.  

The computed range of ERR is presented as a function of the interface crack 
length for a constant friction coefficient µ=0.0 in Figure 5.64. The total ERR range 
as a function of the interface crack length has a decreasing tendency. Mode I of the 
ERR range prevails, contrary to the ERR range contributions obtained from 
mechanical cycling, and is comprised of between 93.4% (ao=5.4×10-3 m) and 
95.2% (a=7.2×10-3 m) of a total ERR range, while the fatigue crack is arrested at 
aarr=6.3×10-3 m according to the assumption of fatigue crack growth threshold 
∆Gth=100 J/m2.

Finally, the ERR range determination makes it possible to estimate the number 
of thermal cycles necessary to hold up the fatigue crack growth. The same fatigue 
constants as in the case mechanical fatigue are used to calculate the fatigue cycle 
number. The number of thermal cycles to increase the crack length from ao to arr is 
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equal to Narr=1.012155×106 cycles (cf. Figure 5.65). As fatigue crack is arrested 
and supported by the decreasing ERR range (see Figure 5.64), no criterion of 
composite failure is possible to take into account the crack propagation instability. 
That is why it would be feasible to use (5.87) to estimate the fatigue damage 
accumulation influence on the overall composite properties, replacing acr by aarr.

Figure 5.64. Energy release rate range  

Figure 5.65. Number of cycles to fatigue crack arrest  
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5.4 Perturbation-based Fracture Criteria  

Contrary to the traditional fracture criteria used in both deterministic analysis 
and stochastic Monte Carlo simulations, the probabilistic fracture criteria consist of 
probabilistic moments of material strength as well as the corresponding moments 
of external load and its direction angle. The second order perturbation technique is 
applied below to rewrite the Tsai-Hill criterion in terms of expected values and 
standard deviations of all quantities discussed.  

It is expected that a failure criterion is a function of material strength and the 
stress (or strain) applied at the specimen. While for isotropic and homogeneous 
materials such a condition should not be relatively complicated, in the case of 
composites, the total strength is a function of composite type, the principal 
directions of the structure and the stress applied as well as the angle relating this 
stress to the direction introduced. One of the most popular in composite 
engineering are Tsai-Hill and Tsai-Wu failure criteria, which may be rewritten as 
follows:  
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X, Y, S denote composite strengths in the three principal directions (longitudinal, 
transverse and shear, respectively) while σ and θ denote externally applied axial 
stress and the angle between this stress and principal direction X [352];  
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where Xt, Xc, Yt, Yc and S are axial strength in tension, compression and transverse 
strength in tension and compression as well as shear strength, as previously. 
Equations (5.88) and (5.89) can be rewritten for the needs of probabilistic analysis 
after some basic algebraic transformations, while all of the quantities appearing in 
these equations may be treated as random variables.  

Let us consider a fracture criterion for a composite being a function of material 
properties and stress tensor components to introduce the perturbation-based 
fracture analysis  

( ) 0; =Xσf (5.90)

In terms of random loads and/or probabilistically given composite properties it can 
be said that (6.90) is verified with probability almost equal to 1. Since the fact that 
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the character of the final probability density function (PDF) is unknown then 
denoting by ( )( )X,σµ fk  the kth order probabilistic moment of the failure function 

( )X;σf , there holds  

( ) ( )( )( ) 0,, =≥ XX σµσ fFf k (5.91)

where ( )( )( )X,σµ fF k  is some deterministic function of probabilistic moments 

( )( )X,σµ fk . The function can be evaluated starting from integration over the 

probability domain method, the characteristic function differentiation approach, 
Monte Carlo simulation technique or, alternatively, stochastic perturbation theory. 
Using the classical second order version of the perturbation technique, zeroth, first 
and second order equations for Tsai-Hill criteria in the form of  
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can be written as  
• zeroth order equation:  
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• first order equations: 
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• second order equation:   
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Analogous zeroth, first and second order equations can be obtained from Tsai-
Wu deterministic criteria, cf. (5.89). Then, the first two probabilistic moments for 
the failure function ( )X;σf  can be calculated in the form of expected values  

( )[ ] ( ) ( )XXX ;;; )2(
2
1)0( σσσ fffE += (5.96)

and variances  

( )( ) ( )( ) )(;;
2, bXX VarffVar r σσ = (5.97)

using the relations derived above.  
Starting from the first two probabilistic moments , various forms of the function 

( )( )( )X,σµ fF k  can be proposed which depend generally on the probability 

density function of input random variables as well as the output PDF of the failure 
function ( )X;σf . The following form of F is proposed below:  

( ) ( )[ ] ( )( )XXX ;fVar;fE;f σ−σ≥σ 3 (5.98)

which gives the most accurate result for Gaussian deviates and all symmetric PDF 
with the same first two probabilistic moments and the fourth order coefficient of 
concentration greater than 3. By the ‘desired result’ it is understood that inequality 
(5.98) holds true with probability almost equal to 1. Let us note that such a 
function is called an envelope function in stochastic theories of structural 
reliability.  

The probabilistic failure criteria presented above have been examined in terms 
of the angle θ and axial stress σ being input random variables for the following 
material properties of the composite X=5.0 GPa, Y=6.0 GPa, S=4.0 GPa for Tsai-
Hill criterion and Xt=5.0 GPa, Xc=5.5 GPa, Yt=6.0 GPa, Yc=6.6 GPa, S=4.0 GPa in 
the case of Tsai-Wu model. The variability of the expected values of the input 
parameters is taken as E[θ] =0,...,45 and E[σ]=2.0 GPa,...,6.0 GPa, while their 
standard deviations are in the range of 10% of the corresponding expected values. 
All computations are done by the use of the symbolic computation mathematical 
package MAPLE - zeroth, first and second order failure surfaces are obtained and 
starting from them the expected values, standard deviations and ‘envelope’ failure 
surfaces are plotted. Figures 5.66-5.69 and 5.70-5.73 presented below contain 
deterministic, probabilistic envelopes, expected values and standard deviations of 
Tsai-Hill and Tsai-Wu failure surfaces. It is seen that the character of standard 
deviations for both criteria plots is essentially different from the other surfaces.  

Analysing the results plotted in Figures 5.66-5.73 it should be underlined that 
deterministic surfaces are quite close to their expected values (see (5.96)). It is 
caused by the fact that the coefficient of variation of both input random variables is 
relatively small. Further, it is observed that the ‘envelope’ failure surfaces for both 
Tsai-Hill and Tsai-Wu criteria have generally the same character as the 
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corresponding deterministic and expected values. However, essentially smaller 
values generally confirm its usefulness in the probabilistic analysis of composite 
failure and should be studied further in detail. Especially valuable would be the 
application of the methodology proposed in the case of full statistical information 
on composite strength properties and the external load applied.  

Finally, it should be underlined that the symbolic approach to stochastic 
perturbation analysis makes possible any finite order computations of probabilistic 
moments of the output. Due to this fact, precise numerical studies on model 
convergence for different perturbation orders, various PDF of input variables and 
their probabilistic parameters should be carried out.  

Figure 5.66. Tsai-Hill deterministic failure surface 

Figure 5.67. Tsai-Hill ‘envelope’ failure surface 
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Figure 5.68. Expected values for Tsai-Hill failure surface  

Figure 5.69. Standard deviations of Tsai-Hill failure surface  

Figure 5.70. Tsai-Wu deterministic failure surface 
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Figure 5.71. Tsai-Wu ‘envelope’ failure surface 

Figure 5.72. Expected values for Tsai-Wu failure surface 

Figure 5.73. Standard deviations of Tsai-Wu failure surface 
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5.5 Concluding Remarks   

The whole variety of mathematical and computational tools shown above 
makes it possible to analyse efficiently ordinary and cumulative deterministic and 
stochastic fatigue processes in different composite materials. Some local and 
global models are mentioned and the deterministic or stochastic techniques 
together with the approaches which enable randomisation of classical deterministic 
techniques to obtain at least the first two probabilistic moments of the structural 
response. For this purpose, most established composite oriented fatigue theories are 
classified and listed here. Next, the application of the perturbation-based SFEM 
has been demonstrated for various aspects of the fatigue process computational 
modelling to the W-SOTM reliability analysis, starting from direct FEM 
simulation in conjunction with fracture phenomena.  

An alternative computational technique (MCS) is shown using the example of 
homogenisation analysis for a fibre-reinforced composite with stochastic interface 
defects simulating interface fatigue. Most of the computational illustrations 
presented above show, which is intuitively clear, that the expected values of 
structural functions decrease together with fatigue process progress. In the same 
time, the second order probabilistic characteristics (standard deviations, variances 
or coefficients of variation) increase together with the increase of fatigue cycle 
number, which means that the random uncertainty measure is increasing during the 
entire process.  

The probabilistic modelling of composite materials fatigue processes 
summarised and proposed in this chapter is still an open question due to the fact 
that the area of composite material applications as well as the relevant technologies 
is still extending and because of the developments of the stochastic mechanics 
itself. The stochastic second or higher order perturbation theory for various 
problems shown above is very fast in randomisation of composite fatigue theories 
and in computational modelling. However, it is not sufficiently efficient in 
numerical simulation of engineering systems with increasing standard deviations of 
input structural parameters. The simulation methods based on the MCS approach 
are computationally exact, but not very effective in simple approximation of the 
probabilistic moments of the composite state functions, their failure criteria and the 
additional reliability index. Further usage of stochastic differential equations 
computer solvers [149] in conjunction with the FEM is recommended to include 
full stochastic nature of crack initiation and detection into the model.  

An essential minor point of the up-to-date fatigue analysis methods (both 
deterministic and stochastic) is the lack of microstructural effects in the final 
formulae; some work is done for laminated structures. However interface 
phenomena in fibre-reinforced composites and stochastic microstructural 
problems in all composites are not included in the analysis until now. Finally, the 
lack of systematic sensitivity analysis of various models is observed, which makes 
it impossible to find a reasonable compromise between complexity of the fatigue 
analysis approach, probabilistic treatment of various phenomena resulting in 
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cumulative damage and applied mathematical and numerical techniques. Such a 
sensitivity analysis should be carried out treating the expected values and higher 
order probabilistic moments of structural composite parameters as design variables, 
which seems to be necessary considering the application of random variables and 
fields in this area.   

5.6 Appendix 

Various fatigue models are collected below to give the overview of the 
capabilities of this analysis for both homogeneous and heterogeneous structures; 
they are listed according to the subject classification presented in this chapter.   
A. Fatigue cycles number analysis - determine N:
1. Madsen (power law function) [244]:  

mKSN −= (A5.1) 

S is stress amplitude, K,m are some material constants;  
2. Boyce and Chamis [42]:  
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NMF - final cycle, NMO - reference cycle, S - fatigue strength, S0 - reference 
fatigue strength, TF - final temperature, T0 - reference temperature, T - current 
temperature, σ - current mean stress, σ0 - reference (residual) stress, n,q -

empirical parameters;  
3. Caprino, D’Amore and Facciolo [53]:  
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fn(N) - probability of failure; γ,σ - scale parameter (characteristic strength) and 
the shape parameter of the Weibull distribution of the static strength; R - given 
stress ratio; σmax - maximum stress level; α, β - constants from experiments.  

B. Stiffness reduction models:   
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1. Whitworth [365]:  
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E(n) - residual modulus after n fatigue cycles, E0 - initial modulus, N=n/N* -
ratio of applied cycles to fatigue life; S,a,D - some constants, f(E0,S) - some 

function of E0,S, i.e. 
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failure;  
2. Hansen [127]:     
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A - some constant, εe - effective strain level, ε0 - damage strain where
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3. Bast and Boyce (creep component for the stiffness reduction) [20]:  
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tu - ultimate strength of creep hours when rupture strength is very small, t0 -

reference number of creep hours where rupture strength is very large, t - current 
number of creep hours, v - empirical material constant for the creep effect.  

C. Fatigue crack growth analysis (
dN

da
) - deterministic methods (Yokobori [379]):   

1. Liu (energy approach)  2

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆

sy

K

σ
α (A5.8) 

2. Paris (energy approach)  4
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3. Raju (energy approach)  

( )2
max

22

4

3
KK

K

Icsy −
∆

σ
α ; 1max KK << (A5.10) 



288     Computational Mechanics of Composite Materials 
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5. Rice (crack opening 
displacement - COD) 
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6. Weertman (continuous 
dislocation formalism)  2
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7. Weertman, Mura and Lin 
(continuous dislocation 
formalism) 
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8. Lardner (COD)  
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9. Schwalbe (COD)  
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10. Pook and Frost (COD)  2
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11. Tomkins  
(skipband decohesion)   
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12. McEvily (semi-
experimental approach with 
COD)  
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13. Donahue et al. (COD)  

a

K

µσ
α

2

11

∆
(A5.20) 

14. Yokobori I (nucleation 
rate process approach)  
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15. Yokobori II (nucleation 
rate process approach)  
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16. Yokobori III (dislocation 
approach)  2
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17. Yokobori IV (dislocation 
approach)  2
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where αi, i=1,15 denote some experimentally determined material constants;  

18. Yokobori V (monotonic 
yield strength dependence)  
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19. Paris-Erdogan [280]:  

( ) [ ]mm aaYCKC πσ∆=∆ )( (A5.26) 

Y(a) - geometry factor, σ∆ - stress range, C, m - some material constants;  
20. Ratwani-Kan [296]:  

( ) 11 mn
thzmizma bC τττ −− (A5.27) 

τ zmi - minimum interlaminar shear stresses, τ zma - maximum interlaminar 

shear stresses, τ th - interlaminar threshold shear stress range, C, n1, m1 - material 

constants, b - delamination length;  
21. Wang-Crossman:  
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Gc - critical strain energy rate; σm - applied load, E - elastic modulus, a -

delamination width; t - ply thickness;  
22. Forman et al. [101]:  
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where C, m are the material constants with 3≈m  for steels and m≈3-4 for 
alluminium alloys;  
23. Donahue et al. [82] for thKK ∆→∆  obtained  
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24. McEvily and Groeger [247]  
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where σY denotes the yield stresses of the specimen, A is an environment sensitive 
material parameter and KIC is a plane strain fracture toughness.  
25. Experimentally based law for combined mode I and mode II loadings proposed 
by Roberts and Kibler [302], where crack growth is obtained as  

( )m
eKC ∆ , ( )4

1
44 8 IIIe KKK += (A5.32) 

26. Hobson [137] proposed one of the first quantitative models to describe short 
fatigue crack growth in terms of a microstructural parameter d assumed as a 
material characteristic  

( ) daadCa ≤− − ;1 αα (A5.34) 

where α, C are empirical constants (C depends on both material and loading 
parameters – Young modulus, yield stress and the applied cyclic stress);  

27. Kitagawa-Takahashi curve: the LEFM (linear elastic fracture mechanics) 
approach determining the condition describing the stress level 

th
K∆  when the 

cracks can grow  

aYKth πσ∆=∆ (A5.35) 

Let us recall that the LEFM approach is invalid when the small-scale yielding 
conditions are exceeded 

cy
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3
2  where 

cy
σ  is the cyclic yield stress;  

28. Priddle law [290]:  
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C - growth resistance, KF - critical value for the stress intensity factor;  

D. Fatigue crack growth analysis - determination of 
dN

da
 (some stochastic 

methods)

( ) ( ))()()(,,,,
)(

max tYaQtXRASKKQ
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tda +=∆= µ
(A5.37) 

a(t) - random crack size, Q - some nonnegative function, ∆K - stress intensity 
factor range, Kmax - maximum stress intensity factor, X(t) - nonnegative random 
process, Y(t) - random process with 0 mean;   
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1. Ditlevsen and Sobczyk [80]:  
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)( γtXa
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tda p= (A5.38) 

p = 1,3/2,2 (experimental), X(t) - Gaussian white noise, process with finite 
correlation time;  
2. Lin and Yang [234]:  
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N(t) - homogeneous Poisson counting process, τk - arrival time of kth pulse, Zk -

random amplitude of kth pulse with the following synergistic sine hyperbolic 
functional form:  
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a(n) - half crack length, Ci - some parameters 
- randomized form:  
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3. Spencer et al. [327]:  
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where G(t) - stationary Gaussian white noise, Z(t) - nonstationary random 
process; the Pontriagin-Vitt equation is used   
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with the boundary conditions:  
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Fatigue damage function based model - calculation of 
dN

dD
:

1. Palmgren-Miner model [299]:  

N

n
D = (A5.46) 

n - number of fatigue cycle, N - number of cycles to failure;  

2. Modified Palmgren-Miner model:  
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C - constant independent of applied stress; some probabilistic aspects of this 
model can be found in [254];  
3. Shanley model:  

nCSD kb= (A5.48) 

S - applied stress, C,K - constants, b - slope of central position of S-N curve;  
4. Marco-Starkey model:  
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Ci>1 - stress dependent constant;  
5. Henry model:  
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St - fatigue of virgin specimen, 
t

S ′
- fatigue limit after damage;  

6. Corten-Dolan model:  

αmcnD = (A5.51) 

m - number of damage nuclei, c,a - function of stress condition; α - some 
constant;  
7. Gatt model:  
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( )α
tt SSD ′−= (A5.52) 

8. Marin model:  

CNS k = (A5.53) 

9. Manson model:  
- for crack initiation:  
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- for crack propagation:  
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10. Owen-Howe model:  
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B,C - some constants;  
11. Srivatsavan-Subramanyan model:  

nN

NN
D

t

t

loglog

loglog

−
−

= (A5.57) 

12. Lemaitre-Plumtree model:  
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13. Fong model [100]:  
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where k represents damage trend;  
14. Cole model:  

CAAD −= (A5.60) 
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DA - attenuation due to damage, A - total attenuation, C - attenuation of virgin 

specimen;  
15. Fitzgerald-Wang model:  
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E - modulus at a fatigue cycle; E* - reference modulus;  
16. Wool model:  
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17. Chou model:  
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18. Hwang-Han model I [143]:  
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F0 - undamaged, Ff - damaged modulus;  
19. Hwang-Han model II [144]:  

c
f Kn

rn
D

−
==

1

)(

ε
ε

(A5.65) 

εf - failure strain;   
20. Hwang-Han model III:   
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21. Morrow approach [257]:  
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Si - amplitude of stress causing fatigue damage, Sm - maximum stress amplitude, 
ni - number of stress peak at level SI, d - plastic work interaction exponent, Ni -

number of stress peak to the failure if Si =const.;  
22. Morrow approach with different cycles:  
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