2 Elasticity Problems

Numerical experiments devoted to multi-component and multiscale media
modelling are still one of the most important part of modern computational
mechanics and engineering [98,161,272,312]. The main idea of this chapter in this
context is to present a general approach to numerical analysis of elastostatic
problems in 1D and 2D heterogeneous media [105,274,300,317] and the
homogenisation method of periodic linear elastic engineering composite structures
exhibiting randomness in material parameters [32,83,356,372,375]. As is shown
below, the effective elasticity tensor components of such structures are obtained as
the closed—form equations in the deterministic approach, which enables a
relatively easy extension to the stochastic analysis by the application of the second
order perturbation second central probabilistic moment analysis. On the other hand,
the Monte Carlo simulation approach is employed to solve the cell problem. As is
known from numerous books and articles in this area, the main difficulty in
homogenisation is the lack of one general model valid for various composite
structures; different nature homogenised constitutive relations are derived for
beams, plates, shells etc. and even for the same type of engineering structure
different effective relations are fulfilled for composites with constituents of
different types (with ceramic, metal or polymer matrices and so forth). That is why
numerous theoretical and numerical homogenisation models of composites are
developed and applied in engineering practice.

All the theories in this field can be arbitrarily divided, considering especially
the method and form of the final results, into two essentially different groups. The
first one contains all the methods resulting in closed form equations characterizing
upper and lower bounds [108,138,156,285,339] or giving direct approximations of
the effective material tensors [122,123,248]. In alternative, so—called cell problems
are solved to calculate, on the basis of averaged stresses or strains, the final global
characteristics of the composite in elastic range [11,214,304,383], for thermoelastic
analysis [117], for composites with elasto—plastic [50,57,58,146,332] or
visco—elasto—plastic components [366], in the case of fractured or porous
structures [38,361] or damaged interfaces [224,252,358]. The very recently even
multiscale methods [236,340] and models have been worked out to include the
atomistic scale effects in global composite characteristics [67,145]. The results
obtained for the first models are relatively easy and fast in computation. However,
usually these approximations are not so precise as the methods based on the cell
problem solutions. In this context, the decisive role of symbolic computations and
the relevant computational tools (MAPLE, MATHEMATICA, MATLAB, for
instance) should be underlined [64,111,268]. By using the MAPLE program and
any closed form equations for effective characteristics of composites as well as
thanks to the stochastic second order perturbation technique (in practice of any
finite order), the probabilistic moments of these characteristics can be derived and
computed. The great value of such a computational technique lies in its usefulness



Elasticity problems 31

in stochastic sensitivity studies. The closed form probabilistic moments of the
homogenised tensor make it possible to derive explicitly the sensitivity gradients
with respect to the expected values and standard deviations of the original material
properties of a composite.

Probabilistic methods in homogenisation [116,120,141,146,259,287,378] obey
(a) algebraic derivation of the effective properties, (b) Monte—Carlo simulation of
the effective tensor, (c) Voronoi—tesselations of the RVE together with the relevant
FEM studies, (d) the moving—window technique. The alternative stochastic second
order approach to the cell problem solution, where the SFEM analysis should be
applied to calculate the effective characteristics, is displayed below. Various
effective elastic characteristics models proposed in the literature are extended
below using the stochastic perturbation technique and verified numerically with
respect to probabilistic material parameters of the composite components. The
entire homogenisation methodology is illustrated with computational examples of
the two—component heterogeneous bar, fibre—reinforced and layered unidirectional
composites as well as the heterogeneous plate. Thanks to these experiments, the
general computational algorithm for stochastic homogenisation is proposed by
some necessary modifications with comparison to the relevant theoretical
approach.

Finally, it is observed that having analytical expressions for the effective
Young modulus and their probabilistic moments, the model presented can be
extended to the deterministic and stochastic structural sensitivity analysis for
elastostatics or elastodynamics of the periodic composite bar structures. It can be
done assuming ideal bonds between different homogeneous parts of the composites
or even considering stochastic interface defects between them and introducing the
interphase model due to the derivations carried out or another related
microstructural phenomena both in linear an nonlinear range. In the same time,
starting from the deterministic description of the homogenised structure, the
effective behaviour related to any external excitations described by the stochastic
processes can be obtained.

2.1 Composite Model. Interface Defects Concept

The main object of the considerations is the random periodic composite
structure Y with the Representative Volume Element (RVE) denoted by Q. Let us
assume that € contain perfectly bonded, coherent and disjoint subsets being
homogeneous (for classical fibre—reinforced composites there are two components,
for instance) and let us assume that the scale between corresponding geometrical
diameters of Q and the whole Y is described by some small parameter €>0; this
parameter indexes all the tensors rewritten for the geometrical scale connected with
Q. Further, it should be mentioned that random periodic composites are
considered; it is assumed that for an additional ® belonging to a suitable
probability space there exists such a homothety that transforms € into the entire
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composite Y. In the random case this homothety is defined for all probabilistic
moments of input random variables or fields considered. Next, let us introduce two
different coordinate systems: y = (y], Vo y3) at the microscale of the composite

and x = (x,,x,,x,) at the macroscale. Then, any periodic state function F defined

on Y can be expressed as

2.1

Fe(x)=F(§)=F(y)

This definition allows a description of the macro functions (connected with the
macroscale of a composite) in terms of micro functions and vice versa. Therefore,
the elasticity coefficients (being homogenised) can be defined as

Cha(x)=Cyy (y) 2.2)

Random fields under consideration are defined in terms of geometrical as well
as material properties of the composite. However the periodic microstructure as
well as its macrogeometry is deterministic. Randomising different composite
properties, the set of all possible realisations of a particular introduced random
field have to be admissible from the physical and geometrical point of view, which
is partially explained by the below relations. Let each subset € contain linear—
elastic and transversely isotropic materials where Young moduli and Poisson
coefficients are truncated Gaussian random variables with the first two
probabilistic moments specified. There holds

0<elx;m)< oo (2.3)
: Q 2.4
Eleto)l-{ 40
e,; x€ Q,
Vare 0 o (2.5)
Cov(ei(x;wxe,.(x;w)):[ . V} e12
~l<v(nw)<i (2.6)
vy xe Q 2.7
E ; =
b0l { e
] N\ | Varv, 0o | .. (2.8)
Cov(vi(x,a))vj(x,a)))—[ 0 Var v2:|, ,j=1,2

Moreover, it is assumed that there are no spatial correlations between Young
moduli and Poisson coefficients and the effect of Gaussian variables cutting—off in
the context of (2.3) and (2.6) does not influence the relevant probabilistic
moments. This assumption will be verified computationally in the numerical
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experiments; a discussion on the cross—property correlations has been done in
[315]. Further, the random elasticity tensor for each component material can be
defined as

v(x,®)

Ciju ()Gw): 5ij5k1

) e(x;m)

(1+v(xo)(l-2v(xeo il =12 09

1
+ (5ik5jl +6;6 )me(x;w)

Considering all the assumptions posed above, the random periodicity of Y can
be understood as the existence of such a translation which, applied to €, enables to
cover the entire Y (as a consequence, the probabilistic moments of e(x;®) and
v(x;m) are periodic too). Thus, let us adopt Y as a random composite if relevant
properties of the RVE are Gaussian random variables with specified first two
probabilistic moments; these variables are bounded to probability spaces
admissible from mechanical and physical point of view.

Let us note that the probabilistic description of the elasticity simplifies
significantly if the Poisson coefficient is assumed to be a deterministic function so
that

v(x)=v,_, fora=12,...n; xe Q_ (2.10)
Finally, the random elasticity tensor field C;;, (x;®) is represented as follows:

Cip (x:0)
@2.11)

2(1+v(x))

- v(x)
=e(x; a’){(siia’d (1+v@)(1-2v()

+ (5ik5jz +0,0 );}

Because of the linear relation between the elasticity tensor components and the
Young modulus these components have the truncated Gaussian distribution and
can thus be derived uniquely from their first two moments as

Elcijkl (x;a))J= Ajji(a) (X) - E[ea (x;a))]

for iJ,k,l:l,z, a:l,z’“.,n; xe QH (212)

and

Var(cijkl (x;w)): At @) (O Ajjia (a) (x)Var(ea (x;a)))

for i,j,k,I=1,2, a=1,2,...n; xe Q,, (2.13)

with no sum over repeating indices at the right hand side.
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There holds

1
2(1+v(x)) (2.14)

_ V(x)
A (x) =66 (1 +v(x))(1 ~ 2v(x)) + (5ik5jl +6,6 ji )

ijkl=12

General methodology leading to the final results of the effective elasticity
tensor is to rewrite either strain energy (or complementary energy, for instance) or
equilibrium equations for a homogeneous medium and the heterogeneous one.
Next, the effective parameters are derived by equating corresponding expressions
for the homogeneous and for the real structure. This common methodology is
applied below, particular mathematical considerations are included in the next
sections and only the final result useful in further general stochastic analysis is
shown. The expected values for the effective elasticity tensor in the most general
case can be obtained by the second order perturbation based extension as [162,208]

(eff) o0 " (eff)r L AL A 18 (ef)rs (2.15)
Elcsr = Tl 0wy + ab" 7 (y) + L Ab" AB* CED™ ) pre(b) b

Using classical probability theory definitions and theorems it is obtained that

T i (2.16)
[pr(y))db=1, [Abpg(b(y))db=0
T 2.17
[Ab"AB pg (b(y) db = Covlp”,b*); 1< 7,5<R (@17)
Therefore
Elcs (n]= i )+ Lch covlp” b*) (2.18)

Further, the covariance matrix Cov(Ci;Z]lf );C;‘;ffnf) of the effective elasticity

tensor is calculated using its integral definition

Covlci;cten )

pgmn

= flegr - ey et - i) sloob, )ana, @19

oo

whereas inserting the second order perturbation expansion it is found that
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+oo
_ Tl e ef)r 1 (eff)rs _ (e )0
= Hegrr +an.cii +Lanan. ey - i) (2.20)

—o0

(cemo s ap L ap, ab. O~ W ooy, b, ) dbydb,

mnpq mnpq mnpgq mnpq

After all algebraic transformations and neglecting terms of order higher than
second, there holds

Cov( ). ol )

ijkl pgmn

2.21)

i f ] eff ).,r ~(eff )s
= IAbrCéif””AbsC,ﬁff;Zf g(bi»bj)dbidbj :Ci(jkaf)’ Cr(m]z)(); Cov(b,,b,).

—o0

Then, starting from two—moment characterization of the effective elasticity tensor
and the corresponding homogenisation models presented in (2.15) — (2.21), the
stochastic second order probabilistic moment analysis of a particular engineering
composites can be carried out. In the general case, these equations lead to a rather
complicated description of probabilistic moments for the effective elasticity tensor
particular components.

In the theory of elasticity the continuum is usually uniquely represented by its
geometry and elastic properties; most often a character of these features is
considered as deterministic. It has been numerically proved for the fibre
composites that the influence of the elastic properties randomness on the
deterministically represented geometry can be significant. The most general model
of the linear elastic medium, and intuitively the nearest to the real material, is
based on the assumption that both its geometry and elasticity are random fields or
stochastic processes. The phenomenon of random, both interface [5,27,131,200,
225,242] and volumetric [74,316,342,353,388], non-homogeneities occur mainly
in the composite materials. While the interface defects (technological inaccuracies,
matrix cracks, reinforcement breaks or debonding) are important considering the
fracturing of such composites, the volume heterogeneities generally follow the
discrete nature of many media. The existing models of stochastic media (based on
various kinds of geometrical tesselations) do not make it possible to analyse such
problems and that is why a new formulation is proposed.

The main idea of the proposed model is a transformation of the stochastic
medium into some deterministic media with random material parameters, more
useful in the numerical analysis. Such a transformation is possible provided the
probabilistic characteristics of geometric dimensions and total number of defects
occuring at the interfaces are given, assuming that these random fields are
Gaussian with non-negative or restricted values only. All non—homogeneities
introduced are divided into two groups: the stochastic interface defects (SID),
which have non-zero intersections with the interface boundaries, and the
volumetric stochastic defects (VSD) having no common part with any interface or
external composite boundary. Further, the interphases are deterministically
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constructed around all interface boundaries using probabilistic bounds of geometric
dimensions of the SID considered. Finally, the stochastic geometry is replaced by
random elastic characteristics of composite constituents thanks to a probabilistic
modification of the spatial averaging method (PAM). Let us note that the
formulation proposed for including the SID in the interphase region has its origin
in micro—mechanical approach to the contact problems rather than in the existing
interface defects models.

Having so defined the composite with deterministic geometry and stochastic
material properties, the stochastic boundary—value problem can be numerically
solved using either the Monte Carlo simulation method, which is based on
computational iterations over input random fields, or the SFEM based on second—
order perturbation theory or based on spectral decomposition. The perturbation—
based method has found its application to modeling of fibre —reinforced composites
and, in view of its computational time savings, should be preferred.

Finally, let us consider the material discontinuities located randomly on the
boundaries between composite constituents (interfaces) as it is shown in Figs. 2.1
and 2.2.

Q

a-1

Figure 2.1. Interface defects geometrical sample

Figure 2.2. A single interface defect geometric idealization

Numerical model for such nonhomogeneities is based on the assumption that
[193,194]:
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(1) there is a finite number of material defects on all composite interfaces; the total
number of defects considered is assumed as a random parameter (with nonnegative
values only) defined by its first two probabilistic moments;

(2) interface defects are approximated by the semi-circles (bubbles) lying with
their diameters on the interfaces; the radii of the bubbles are assumed to be the next
random parameter of the problem defined by the expected value and the variance;
(3) geometric dimensions of every defect belonging to any Q  are small in
comparison with the minimal distance between the I, ,,, and T,
boundaries for a=3,...,n or with Q, geometric dimensions;

(4) all elastic characteristics specified above are assumed equal to 0 if xe D, for
a=1,2,...,n.

It should be underlined that the model introduced approximates the real defects
rather precisely. In further investigations the semi—circle shape of the defects
should be replaced with semi—elliptical [353] and their physical model should obey
nucleation and growth phenomena [345,346] preserving a random character.
However to build up the numerical procedure, the bubbles should be appropriately
averaged over the interphases, which they belong to. Probabilistic averaging
method is proposed in the next section to carry out this smearing.

Let us consider the stochastic material non—homogeneities contained in some
Q, c Q. The set of the defects considered D, can be divided into three subsets
D,

intersection with the boundary T, , D/ having zero intersection with T},

Further, all the

D’ and D!, where D/ contains all the defects having a non-zero

and T, ,and D] having a non-zero intersection with T, ., .
defects belonging to subsets D/ and D are called the stochastic interface defects
(SID) and those belonging to D/ the volumetric stochastic defects (VSD). Let us
consider such Q, Q7 and Q7 , where Q,=Q/ U Q) UQ”, that with probability

equal to 1, there holds D, cQ/,, D! Q! and D”c Q" (cf. Figure 2.3).

Aal Z_T_ Dwo—_ B

I

Figure 2.3. Interphase schematic representation

a-1,a) 1—‘(a,a,+1/
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The subsets ),Q”,Q” can be geometrically constructed using probabilistic

moments of the defect parameters (their geometric dimensions and total number).
To provide such a construction let us introduce random fields A; (x;w) and

A”(x;w) as upper bounds on the norms of normal vectors defined on the
boundaries T, and T, and the boundaries of the SID belonging to D),
and D, respectively. Next, let us consider the upper bounds of probabilistic

distributions of A] (x;w) and A”(x;w) given as follows:

A, = E[N, (x;0) |+ 3 Var(A, (x;0)) (2.22)
A" = E[A”(x; 0) |+ 3 Var(A7 (x; 0)) (2.23)

Thus, Q/,Q” can be expressed in the following form:
Q, ={P(x)e Q, 1d(P,T410) S A, | (2.24)
Q) ={P(x)€ Q, 1 d(P.T(, 411 S AT} (2.25)

where i=1,2 and d(P,I") denotes the distance from a point P to the contour T". Let

us note that Q” can be obtained as
Q=0 -Q vQ” (2.26)

Deterministic spatial averaging of properties Y, on continuous and disjoint

subsets Q_  of Q is employed to formulate the probabilistic averaging method.

a
(av)

The averaged property Y
equation [65,129]:

characterizing the region Q is given by the following

iYa Qﬂ
Y@ ==l q ; xeQ

(2.27)

where |Q| is the two—dimensional Lesbegue measure of €. Deterministic

averaging can be transformed to the probabilistic case only if Q is defined
deterministically, and Y, and Q, are uncorrelated random fields. The expected

value of probabilistically averaged Y " (w) on Q can be derived as
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av 1 <
Elr®? )((D)]= @E]E[Ya (@)] EuQu ((D)” (2.28)
and, similarly, the variance as
Varly " @)= ﬁ S Var(y, @) var(Q, @) (2.29)
a=l1

Using the above equations Young moduli are probabilistically averaged over all
Q, regions and their Q/,Q”,Q” subsets. Finally, a primary stochastic geometry

of the considered composite is replaced by the new deterministic one. In this way,
the n—component composite having m interfaces with stochastic interface defects
on both sides of each interface and with volume non—homogeneities can be
transformed to a n+m-—component structure with deterministic geometry and
probabilistically defined material parameters. More detailed equations of the PAM
can be derived for given stochastic parameters of interface defects (if these defects
can be approximated by specific shapes — circles, hexagons or their halves for
instance).

Let us suppose that there is a finite element number of discontinuities in the
matrix region located on the fibre—matrix interface. These discontinuities are
approximated by bubbles — semicircles placed with their diameters on the interface,
see Figure 2.4. The random distribution of the assumed defects is uniquely defined
by the expected values and variances of the total number and radius of the bubbles;
it is shown below, there is a sufficient number of parameters to obtain a complete
characterization of semicircles averaged elastic constants.

Using (2.28) and (2.29) one can determine the expected value and the variance
of the effective Young modulus e, , the terms included in the covariance matrix of

this modulus and also the Poisson ratio. It yields for the expected value

S Q,

¢

Sq. =S
E[]E{—}E[]{l Ll ]] 20)
Q.
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Q b(i)

Ql

Figure 2.4. Bubble interface defects in the fibre —reinforced composite

AZC

L R J AZC

Figure 2.5. Interphase for bubble interface defects

As can be easily seen in the above relation, there holds

Sa, = n{(R +Elrg ]+ 3@[%])2 - RZ}

In a similar way the variance is derived as

Varle,, |=Var||1- S, ‘e,
Sa,,

2.31)

(2.32)
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It can be shown that this equation could have the following form:

(2.33)

Var[eZC ] = {1 - SL E[Sb ]}2 Var[ez ]

Q,

c

+

5 Var[Sb ]Var[ez]+ ZLVar[Sb]E2 [ez]
Q,, Sa,,

2¢

which, neglecting moments of higher than second order, can be reduced to

2
Var[gZC]:{l_ ! E[Sb]} Varle, |+ ——Varls, | E2[e, ] (2.34)
Sa, Sa,

2¢ 2¢

Now the distribution parameters S, have to be found. As can be seen
Sp =%”(rb)2Mb (2.35)

where M, is the number of €, regions foundin €,  (according to Figures 2.4

and 2.5) and is equal to
M, =2nRm, (2.36)
Therefore, using fundamental properties of random variables it is obtained that

E[M,)=27R - E[m, ] (2.37)
and
Var[Mb]=47r2R2 -Var[mb] (2.38)
From the definition of the expected value one derives

E[s,]= 5 El(rb )szJ= %{E2 [1, ]+ varlr, ]}E[Mb] (2.39)

Finally, the variance of §, is found as
Varls, 1= Varlz (5 ¥ v, J= =2 varl(, P 1, | (2.40)

It can be shown that this expression may be transformed into the form:



42  Computational Mechanics of Composite Materials

2

Var[Sb]= ”T <E2 [rb]—f— Var[rb ])zVar[Mb]
+ %Var[”b] (E2 [Mb]-i- Var[Mb ]) (2E2 [rb]+ Var[rb ])

(2.41)

Substituting the equations describing §, distribution parameters into the relations

describing the expected value and variance of the e, modulus, we can similarly

derive the data necessary for numerical analysis.

Using analogous equations, the stochastic interface defects in the fibre region
can be approximated. So, let us assume a finite number of these discontinuities
inserted into the contact zone. As already established, the fibre material has good
resistance to degradation (much better than the matrix) and because of this, the
defects in the €, region can be approximated as teeth with their sharp sides
directed towards the fibre centre. A single discontinuity is, from the geometrical
point of view, the superposition of two circular quadrants with the same radius
(Figure 2.6). There holds

and

Q.

Ele, 1= E[el][l_%E[St]]

Var[elc]z {l - L E[S, ]FVar[el]

Q

c

; Var[St ]Var[el]+ S%Var[S,] E? [el]

er le

1Y

L
Oy 4

+

Ki

Ql

Figure 2.6. Teeth interface defects in fibre-reinforced composite

(2.42)

(2.43)
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Figure 2.7. Interphase for teeth interface defects

The relations describing the discontinuity parameters will have a different form

=@-3)n )M (2.44)

t

so that
Els, 1= -=) i P 1, )= - ) {2 1+ varls v, (2.45)

and, finally

Var[S,]z(—%f(E2 |+ varlr, )zVar

+2. -2 f varl;] EZ[M,]+VW[M,])(2E2 I 1+ varlr )

(2.46)

The Poisson ratio for the fibre interphase region can be obtained in analogous way.
Finally, the covariance matrix of the Young modulus for this composite takes the
following form:

Cov(e(i) e )=
Varle,]  Cole,.e, ] 0 0 2.47)
Covle,,e,.] Varle,,] 0 0
0 0 Var[ezc ] Cov[eZc €5 ]

0 0 Covle,, e, ] Varle, ]
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Zeroing of the corresponding covariance matrix components can be achieved from
the assumed mutual independence of the Young modulus in the fibre, its contact
zone and associated regions for the matrix.

Special purpose numerical procedure has been implemented to check the
influence of the interface defects parameters on the effective elastic parameters of
the interphase. The expected values of the interface discontinuities in the matrix
and fibre contact zone were assumed as 4, 10, 20 and 40 with the width of the
observed interface varying between 4.0E-3 and 2.0E-2. The results of these
computations are presented in Figures 2.8 to 2.13: the expected values of the
homogenised Young modulus functions are given in Figures 2.8 and 2.9, the
averaged Poisson ratio functions in Figures 2.10 and 2.11 and the variances of the
Young modulus functions in Figures 2.12 and 2.13. All of these variables are
marked on the vertical axis and the expected values of the interface defects radius
are shown in the horizontal ones.
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| — - — - 20 "teeth” o~ |
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Figure 2.8. Expected values of probabilistically averaged Young modulus in fibre
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Figure 2.9. Expected values of probabilistically averaged Young modulus in matrix
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Figure 2.10. Probabilistically averaged Poisson ratio in fibre



46  Computational Mechanics of Composite Materials

" ' ' ' "~ ' '
! ERE i p——e YRS o '\\\;;' e l
I BN EEEE 10 "bubbles” | : : \\\\‘\ |
0.1+« -« 20 "bubbles” M~~~ = - o o TN
| — - —40 "bubbles" | > j j |
©005+ - - - - N LN R :
| I I I N I 1 |
0 | | | | | | | | |

4.00E-03 6.00E-03 8.00E-03 1.00E-02 1.20E-02 1.40E-02 1.60E-02 1.80E-02 2.00E-02

Figure 2.11. Probabilistically averaged Poisson ratio in matrix

As is expected, the resulting expected values of the homogenised Young
modulus both in the matrix and the fibre regions, and similarly the Poisson ratio,
are linear functions of the contact zone widths. The variances of the averaged
Young modulus are second or higher order functions of this variable and this order
is directly dependent on the number of interface defects.

Comparing Figures 2.8 with 2.9 and 2.12 with 2.13 it can be seen that the
Young modulus in the matrix contact zone is, for the present problem, much more
sensitive to variation of its parameters than the same modulus in the fibre
interphase. Larger coefficient of variation of this modulus is obtained in the matrix
interface region rather than in the fibre contact zone. On the other hand, the
homogenised elastic properties are derived by averaging their values in both
regions. Thus, greater changes in these properties can be expected in the matrix
because of the larger volume of bubbles related to the fibre teeth.

Another interesting effect (cf. Figures 2.12 and 2.13) is the increase of
variances of the homogenised Young modulus in the matrix contact zone for
increasing width of this zone and the number of bubbles. The reverse effect occurs
for the fibre side of the interface and its teeth. This is due to the fact that bubbles
occupy more than half of a volume of the corresponding contact zone, and teeth
less than a half.
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Figure 2.12. Variances of probabilistically averaged Young modulus in fibre
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Figure 2.13. Variances of probabilistically averaged Young modulus in matrix
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2.2 Elastostatics of Some Composites

Elastic properties and geometry of Q so defined result in the random
displacement field u;(x;®) and random stress tensor 0 ;(x;®) satisfying the
classical boundary—value problem typical for the linear elastostatics problem. Let
us assume that there are the stress and displacement boundary conditions, 0€, and

dQ, respectively, defined on Q. Let C,;, be a random function of C' class
defined on the entire € region. Let p denote the mass density of a material
contained in € and pf, denote the vector of body forces per a unit volume. The
boundary—differential equation system describing this equilibrium problem can be
written as follows

0, (x;0) = Cyyy (X, 0) £44(x;0) (2.48)
g;(xw)= %(3”,8(;6] o) . &”j&():; w)) (2.49)
o, j(xw)+p@) f;=0 (2.50)

Elu. (x;0)]= Eli. (x;0)]; xeoQ, (2.51)
Var(u, (x;0))=0; xedQ, (2.52)
Elo;(x;0)]n; = Elt;(x0)]; xe 0@, (2.53)
Var(c,-j (x;a)))nj =0; x€0Q, (2.54)

for a=1,2,...,n and i,j,k,I=1,2.

Generally, the equation system posed above is solved using the well—
established numerical methods. However it should first be transformed to the
variational formulation. Such a formulation, based on the Hamilton principle, is
presented in the next section. To have the formulation better illustrated, an example
of the periodic superconducting coil structure is employed. The stochastic non—
homogeneities simulate the technological innacuracies of placing the
superconducting cable in the RVE. Its periodicity cell in that case is subjected to
horizontal uniform tension on its vertical boundaries to analyse the influence of the
stochastic defects on the probabilistic moments of horizontal displacements. The
stochastic variations of these displacements with respect to the thickness of the
interphase constructed are verified numerically. Stochastic computational
experiments are performed using the ABAQUS system and the program POLSAP
specially adapted for this purpose.
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2.2.1 Deterministic Computational Analysis

The main idea of the numerical experiments provided in this section is to
illustrate the horizontal displacements fields and the shear stresses obtained for the
deterministic problem of uniform extension of the periodicity cell quarter. Both
Young modulus and Poisson ratio are assumed here as deterministic functions; for
the purpose of the tests, the program ABAQUS [1] is used together with its
graphical postprocessor. The periodicity cell quarter has been discretised by 224
rectangular 4—node plane strain isoparametric finite elements according to Figure
2.14.

Figure 2.14. Discretisation of the fibre-reinforced composite cell quarter

The symmetry displacement boundary conditions are applied on the horizontal
edges of the quarter as well as on the left horizontal edge, while the uniform
extension is applied on the right vertical edge of the RVE. The standard deviations
of the composite component Young moduli are taken as o(e,) =4.2 GPa, o(e,) =
0.4 GPa and the stochastic interface defect data are approximated by the following
values: E[n]=3, o(n)=0.05E[n}0.15, E[rF0.02R, o(r)=0.1R=8.0E-4.
Probabilistically averaged values of the interphase elastic characteristics are
obtained from these parameters as follows E [ek E3.82 GPa, Var(e, )=1.48 GPa,

v,=0.324 with the interphase thickness equal to Ak=0.0104. Four numerical

experiments have been carried out for these parameters taking the values collected
in Table 2.1.

Table 2.1. Young modulus values of the interphase for particular tests
Test number 1 2 3 4
€y ) E[ek] E[ek]_3"7(ek) E[ek ]+3'0'(ek)
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Horizontal displacement fields and the shear stress fields for particular
experiments are presented in Figure 2.15 and 2.19 (test no 1), Figure 2.16 and 2.20
for test no 2, Figure 2.17, 2.21 for test no 3 and Figure 2.18 for test no 4.

Comparing these results, it is seen that a decrease of the Young modulus value
lower than its expected value results in a jump of the horizontal displacements field
within and around the interphase. This effect can be interpreted as the possibility of
debonding of the composite components caused by the worsening of the interphase
elastic parameters, which confirms the usefulness of the presented mathematical—
numerical model in the interphase phenomena analysis. It should be underlined that
in other models of interphase defects and contact effects at the interface, the
horizontal displacements have discontinuous character too. On the other hand,
increasing the Young modulus above its expected value does not introduce any
sensible differences in comparison with the traditional deterministic model for the
perfect interface.

Analysing the shear stresses fields ¢, (xl.) collected in Figures 2.19 and 2.21 a

jump of the respective values of stresses at the boundary between the fibre and the
interphase region is observed in all cases. In the case of tests no. 1, 2 and 4 the
shear stress fields have quite similar characters differing one from another in the
interface regions placed near the horizontal and vertical edges of the periodicity
cell quarter. The Glz(x,.) field obtained for test no. 3 has decisively different

character: for almost the entire interface the jump of stresses between the matrix,
interphase and fibre regions is visible. It may confirm the previous thesis based on
the displacement results dealing with the usefulness of the model proposed for the
analysis of the interface phenomena.
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Figure 2.15. Horizontal displacements for test no. 1
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Figure 2.16. Horizontal displacements for test no. 2 7
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Figure 2.17. Horizontal displacements for test no. 3
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Figure 2.19. The shear stresses for test no. 1
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Figure 2.20. The shear stresses for test no. 2

-8.25E+01
+1.38E+02

+5.81E+02

+1.02E+03

+1.46E+03

+1.91E+03

+2.35E+03
+2.57E+03
+2.79E+03

e

Figure 2.21. The shear stresses for test no. 3

The general purpose of the computational experiments performed is to verify
the stochastic elastic behaviour of the composite materials with respect to
probabilistic moments of the input random variables: both the Young moduli of the
constituents as well as the stochastic interface defects parameters. The starting
point for such analyses is a verification of the probabilistically averaged Young
modulus in the interphase (example 1). This has been done by the use of the special
FORTRAN subroutine, while the next tests have been carried out using the 4—node
isoparametric rectangular plane strain element of the system POLSAP. Material
parameters of the composite constituents are taken in examples 1 to 3 as



54  Computational Mechanics of Composite Materials

E(e,) =84.0 GPa, v,=0.22, o(e;)=4.2GPa, E(e,) =4.0 GPa, o(e,) = 04 GPa,
v,=0.34 (expected values and standard deviations of the Young modulus and

Poisson ratio, respectively).

2.2.2 Random Composite without Interface

Defects

The main aim of the numerical analysis is to verify numerically the elastic
behaviour of a fibre composite when the Young modulus of composite components
18 Gaussian random variable. Moreover, numerical tests are carried out to state in
what way, for various contents of fibre (with round section) in a periodicity cell,
the random material properties of reinforcement and matrix influence the
displacement and stress distribution in the cell. A quarter of a fibre composite
periodicity cell is tested in numerical analysis and its discretisation is shown in
Figure 2.22.

Figure 2.22. Discretisation of the periodicity cell quarter

Numerical implementation enabling the computations is made using a 4—node
rectangular plane element of the program POLSAP (Plane Strain/Stress and
Membrane Element). The composite structure is subjected to the uniform tension
(100 kN/m) on a vertical cell boundary (60 finite elements with 176 degrees of
freedom). Vertical displacements are fixed on the remaining cell external
boundaries and the plane strain analysis is performed. Twelve numerical tests are
carried out assuming the fibre contents of 30, 40 and 50 % and the resulting
coefficients of variation are taken from Table 2.2.

Table 2.2. Coefficients of variation for different numerical tests

Test number ole) ofey)
1 0.10 0.10
2 0.10 0.05
3 0.05 0.10
4 0.05 0.05
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Each time the first two probabilistic moments of the displacements are
observed at the interface and on the tensioned vertical edge. In the case of stress
expectations, location and maximum value of reduced stress are examined. Figures
2.23 and 2.24 demonstrate radial displacement coefficients of variation of points
belonging to the fibre—matrix boundary, which depend on the angle  describing

their locations on this boundary.

The results of test no. 1 (Table 2.2) are presented in Figure 2.23, and the next
figure shows the results of test no. 3; results of the remaining tests (no. 2 and 4)
agree with them respectively. In both cases coefficients of variation for 8 =90°
are omitted on the graphs because of their large values. For fibre contents equal to
50%, they are approximately 1.5 times greater than for 8 =0° (disproportion of
the data would give an illegible picture). Therefore, it can be concluded that the
randomness of displacements on the considered boundary depends mainly on the
random character of fibre elastic properties, which means

afu(x)=ale lsxe o, (2.55)
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Figure 2.23. Coefficients of variation in test no. 1
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Figure 2.24. Coefficients of variation in test no. 3

Fibre contents in periodicity cell influence also displacement coefficients of

variation on 0Q,, . This influence is visible especially at 0° <0 <45°. For 40%

contents this decrease is not so sharp, and for 50% plane fraction the tendency is
the opposite: the coefficient increases up to about 1.5 times of the value obtained at

0 =0". In a physical way it may be interpreted as increasing the random measure
of uncertainty about displacements perpendicular to the fibre boundary of the
points belonging to its upper part with increasing fibre radius.

Figures 2.25-2.26 show displacement coefficients of the variation of horizontal

points belonging to a vertical, uniformly tensioned edge of periodicity cell obtained
in tests no. 1, 2, 3 and 4 respectively. Real numbers in decreasing order denote
height on the vertical tensioned edge on the horizontal axes of these figures.
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Figure 2.26. Coefficients of variation in test no. 2
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Figure 2.28. Coefficients of variation in test no. 4

The main conclusion from these results is that the random character of the
matrix elastic properties influences the randomness of displacements at the
tensioned edge of the composite specimen tested. Analogously to the previous
observations it can be written that
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ofu(x)]=ale,]; x€ dQ; (2.56)

Let us note that the random character of fibre stiffness has rather secondary
influence here. The curves describing displacement variation coefficients on the
edge are becoming less and less sharp together with an increase of the coefficients
of variation of the fibre Young modulus. Increase of fibre contents in the
periodicity cell, as expected, in all cases decreases variation coefficients of
tensioned edge displacements, which physically can be interpreted as increasing
stiffening of periodicity cell by the fibre.

Now, let us analyse expected values of maximum stresses (in MPa) in fibre and
matrix specified in Figure 2.29. Darker bars show the maximal stresses in the
matrix region, while lighter bars denote the fibre region, respectively.

Generally, it can be observed that the difference between the obtained expected
values and the results of deterministic tests is approximately equal to the
computational error. This difference would undoubtedly be much bigger if the
formula describing these values included a component connected with elasticity
tensor derivatives. The present version of computer program includes only the first
two components, which correspond with expected values of displacement
functions.

Figure 2.29. Expected values of maximal stresses

The results obtained lead to the conclusion that the most important factor
influencing the value of maximum stresses is unquestionably the fibre radius, cf.
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Figure 2.29. In the case of the matrix region, maximum stresses increase
approximately in direct proportion to fibre radius increment

Elo, (0)]=R; xeQ, (2.57)

To get an analogous relation for maximum stress appearing in the fibre, it is
necessary to make a more precise numerical analysis. In tested examples with
plane fractions of 30, 40 and 50% extremum appeared at 40% contents of fibre in
the periodicity cell. Another factor, which influences the expected values of
maximum stresses within a given material, is its coefficient of variation for the
Young modulus. The following relation can be formulated:

Elo,, (D] =~ole]; xeQ, (2.58)

Finally, it can be observed that there is a third—order influence of stronger
material random changes of elastic features on maximum stresses in the matrix,
especially with decreasing fibre contents in the RVE.

In the context of the present numerical analysis of maximum stresses it should
be added that, apart from changes in the expected values of these stresses, a change
of their locations was observed. In order to state the relation between the location
of changes in the direction of the stress functions extremum and fibre radius
increment it would be necessary to consider a wider range of this radius variation
(equivalent to, for example, a surface fraction of 10 to 60%) with simultaneously
increasing the number of tests (each 1 to 5% for example). The most essential thing
would be, however, creating a mesh much more precise than the one used in the
above tests, especially near the composite interface, where we have, of interest to
us, maximum stresses.

2.2.3 Fibre-reinforced Composite with Stochastic

Interface Defects

The subject of the third numerical example is the fibre—reinforced periodic
composite, which has been discretised in Figure 2.30 as a cell quarter with smaller
contact zones on the left and with larger ones on the right. The composite structure
is subjected to uniform tension on the vertical cell boundary. Six numerical tests
have been performed assuming interphases with different values of the total
number of defects (in turn: 0%, 25% and 50% of the interface length). In each test,
the first two probabilistic moments of the displacements are observed on the phase
boundary and on the vertical edge subjected to tension and the coefficient of
variation for displacements.
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Figure 2.30. Quarter periodicity cell mesh for the SFEM analysis
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Figure 2.31. Expected values of horizontal displacement at the interface
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Figure 2.32. Coefficients of variation of horizontal displacements at the interface
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Figure 2.33. Expected values of horizontal displacements at the tensioned edge
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Figure 2.34. Coefficients of variation of horizontal displacements at the tensioned edge

The expected values of the displacements and their coefficients of variation are
placed on the vertical axes of all figures. The angle 3, which determines the
location of a point on the fibre—matrix interface with respect to the x or y—
coordinate on the tensioned edge, and which is marked on the vertical axes.

A further general observation is a direct proportionality between the number of
interface defects and the volume of the contact zone as well as the expected values
or coefficients of variation of these displacements. Small differences occur in the
interface expected values of displacements for larger values of the angle [3.

By comparing the coefficients of variation of the interface displacements
(Figure 2.32 and 2.34) quite different forms for the relation between these
coefficients and the angle B are observed. The model with a large contact zone
shows a high sensitivity to the number of defects and the changes for the small
contact zone are proportional. In the case of the coefficients of variation of the
tensioned edge horizontal displacement both the models give approximately
reversed effects. For example a small contact zone causes larger coefficients for
smaller 3 values than for the larger ones (Figure 2.32). For both sizes of the contact
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zones the changes in the coefficient o are inversely proportional to the increase in
the number of discontinuities and show some similarity.

Finally, in both models the expected values of the displacement are quite
similar with respect to their locations. In the large contact zone (Figure 2.31 and
2.33) the differences between the obtained expected values of displacements for
0%, 25% and 50% of discontinuities are more significant.

2.2.4 Stochastic Interface Defects in Laminated

Composite

The two—component layered composite has been tested in this example. The
discretisation into 72 finite elements and 233 degrees of freedom as well as the
mixed boundary conditions is shown in Figure 2.35. Both layers have been
uniformly extended in the opposite directions to verify the influence of interphase
between them on the overall behaviour of the structure.

o\ =
E

Figure 2.35. Two—layer laminate in the computational shear test

Ten numerical experiments have been carried out in the example: the
deterministic problem (test—d) and the stochastic one without interface defects
(test—s). In the next experiments the standard deviations of the defects are taken as
o[r]=0.1- E[r], o[n]=0.1- E[n], and the expected values are shown in Table 2.3

(contribution of the boundary occupied by bubbles to the total boundary is given in
brackets).

Table 2.3. The expected values of the interface defects tested

Test1 |Test2 |Test3 |Test4 |Test5S |Test6 |Test7 |[Test8§
E[r] |5.0E-2 |5.0E-2 [5.0E-2 |5.0E-2 |1.0E-1 |1.0E-1 |1.0E-1 |1.0E-I
E[n] |5 10 15 20 5 10 15 20
(10%) | (20%) | (30%) | (40%) | (20%) | (40%) | (60%) |(80%)

The results of the analyses have been collected in Table 2.3, which shows the
expected values and the coefficients of variation of the displacements and are
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generally consistent with those obtained experimentally (in the range of expected
values). The increases of the expected values in comparison to the results obtained
in test—d and test—s are included also in this table. The coefficients of variation of
the horizontal displacements for smaller and greater interphase are presented in
Figure 2.36 and 2.37 as a function of the location of a point on the 92 boundary.

On the horizontal axis the height of the point (%) in decreasing order is presented:
the coordinate 2.5 denotes the point belonging to the interface and 2, region on the
extended €2, boundary, while the coordinate 5.0 denotes the point belonging to the
upper Q, boundary.

Table 2.4. The expected values and coefficients of variation of the displacements tested

Test-d |test-s |test1 |test2 |test3 |testd |testS | test6 |test7 | Test
8

E[q] 1924 |[1.939 [2.0492.089|2.134|2.188|2.686 |2.844 [ 3.065 | 3.408
(E-2) [2.610 [2.633

AE[q] | -0.8 0.0 5.7 7.7 10.1 [12.8 2.0 8.0 16.4 (29.4
(%) -0.9 0.0

olgl |- 0.082 1 0.078 ]10.080 | 0.083 | 0.089 | 0.088 | 0.098 | 0.120 | 0.158

Generally, all the results computed show that the most sensitive region to the
input random parameters is the point located on the weaker material (matrix) and
the interphase on the extended €2, boundary. Moreover, analysing the increases of

the expected values of horizontal displacements on the tensioned boundary the
significant influence of the stochastic interface defects introduced can be observed.
In all tests performed the displacements obtained are greater than for the
composites without defects between the composite constituents.

Moreover, the increases of the displacements analysed increase faster than the
increases of the total length of the boundary occupied by the bubbles, which
follows the stochastic nonlinearity of the model presented. The diagrams of the
displacements have analogous characteristics to those obtained for the coefficients
of variation presented later. However, considering the large disproportions between
the values computed near the interphase and outside it, these graphs have been
omitted.
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Figure 2.36. Coefficients of variation of horizontal displacements for shear test (I)
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Figure 2.37. Coefficients of variation of horizontal displacements for shear test (II)

Comparing the coefficients of variation of the horizontal displacements it is
seen that, especially in case of tests no. 5 to 8 (the interphase twice as large as for
tests 1 to 4) the significant increase of these displacements is about 95% in case of
test no. 8. These increases are analogous to the increases of expected values greater
for displacements rather than the corresponding increases of total length of
interface boundary occupied by the bubbles.

As can be expected, the statistical response of the laminate should depend on
the contrast between stronger and weaker layer material properties, interphase
elastic parameters, the total number of layers in the composite etc. Essentially
different situation can be observed when both material properties and external load
are introduced as random variables [273].
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2.2.5 Superconducting Coil Cable Probabilistic

Analysis

The main ideas of the experiment [193] are as follows: (i) comparison of the
stochastic behaviour of the superconducting coil cable in the original geometry
with the model in which the technological nonhomogeneities have been
probabilistically averaged; (ii) verification of the model sensitivity to the assumed
thickness of the interphase introduced.

The example of the RVE analysed is presented in Figures 2.38 and 2.39 (all
geometric dimensions are given in mm). A single discontinuity is modelled by
complementing two circle quarters (teeths with their sharp sides directed to the
interior of the superconducting cable). Their radii are equal to 1.5 mm for defects
on the interface superconducting cable—tube and 2.0 mm for defects on the
interface cable—jacket. The periodicity cell is subjected to a horizontal uniform
tension on its vertical boundaries; due to symmetry only one quarter of this cell is
employed. Displacement boundary conditions on all the remaining external
boundaries are assumed to satisfy the symmetry conditions.

15,
INSULAT 10N 12_|
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JACKET
TUBE
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CABLE =
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L 40 1w
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54
Figure 2.38. Superconducting coil cable RVE geometry
[T J 7
L1

Figure 2.39. Quarter periodicity cell mesh for the superconductor
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The elastic properties and their probabilistic characteristics of the RVE
components, the expected values and the standard deviations of Young moduli,
Poisson ratios and Kirchhoff moduli are collected in Table 2.5.

Table 2.5. Elastic characteristics of composite components

Material Ele] [GPa] | o(e) [GPa] |4 G [GPa]
Tube 205.0 8.0 0.265 81.0
Superconductor 182.0 0.0 0.300 70.0
Jacket 126.0 12.0 0.311 48.0
Insulation 36.0 0.0 0.210 11.0

The following tests are performed: deterministic test including defects non—
averaged (test 1), an experiment without defects (test 2), an experiment with
defects averaged in the interphase (test 3) or over the finite elements which they
belong to (test 4). The first two probabilistic moments of the displacements are
observed in each test on the interface determined by a radius equal to 9.0 mm
(between the lower superconductor interphase and the superconductor region).
Four additional tests are performed in test 3 to verify the results variations with
respect to the interphase thicknesses: test 3A, where the thickness is equal to the
expected value of the relevant geometric dimensions of interface defects, test 3D
with thickness given by eqn (2.22) and tests 3B and 3C with the intermediate
thicknesses.

The results of these computations due to tests numbered 1 to 4 are presented in
Figures 2.40 and 2.41: the expected values of the horizontal displacements and
their coefficients of variation. The first two moments are marked on the vertical
axes of these figures, while the angle 8, which determines the location of a point
on the interface considered with respect to the x—coordinate on the horizontal axes.
The results of tests 3A to 3D are collected in Table 2.6 presented below the figures.
The expected values of displacements observed (in mm) are given in the upper row
of each table cell and the coefficients of variation in the lower one.

E[q] [mm]
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0.7 T+ " test3 3 N
-+ -test4 s\l
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0 9 18 27 36 45

Figure 2.40. Expected values of horizontal displacements at the tensioned edge
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Figure 2.41. Coefficients of variation of horizontal displacements at the tensioned edge

Table 2.6. The expected values and the coefficients of variation of horizontal displacements

B[] Test 3A Test 3B Test 3C Test 3D
0 1.066 1.069 1.078 1.085
0.0241 0.0237 0.0235 0.0233
9 1.047 1.053 1.057 1.062
0.0239 0.0238 0.0234 0.0232
18 0.985 0.993 0.994 1.003
0.0236 0.0234 0.0231 0.0230
27 0.895 0.897 0.908 0.910
0.0239 0.0235 0.0234 0.0231
36 0.783 0.784 0.784 0.790
0.0241 0.0238 0.0235 0.0232
45 0.631 0.634 0.639 0.645
0.0212 0.0212 0.0213 0.0214

Generally, it can be observed that in all stochastic tests the expected values of
horizontal displacements are greater than the corresponding values obtained from
deterministic tests, which follow equation (1.134). The greatest expected values of
displacements observed are obtained for test 4: from 50% (for f=0°) to 100% (for
B=80°) greater than in the remaining tests. Analogous observation can be done for
the coefficients of variation. Generally, these facts follow the great variances of the
Young moduli in finite elements containing defects averaged in comparison to the
remaining elements.

On the basis of these results it can be stated that the observed probabilistic
moments of displacements are strongly sensitive to the scale of the composite
structure, which probabilistic averaging is applied in. A rapid decrease of the total
area of the region averaged results in a significant increase of the effective Young
modulus and much smaller increases of the expected values for the displacements.
Further, the expected values obtained in test 2 (without including interface defects
in any form) give the most exact results of the horizontal displacements computed
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in the deterministic model. However, for f=30°, which corresponds to the defects
location, the best approximation is obtained in test 3 (with interphase zones
introduced).

Finally, let us consider the stochastic variations of the interface horizontal
displacements to the interphase zone thicknesses illustrated by the results collected
in Table 2.6. It can be observed that increasing thickness causes a small increase of
the horizontal displacements and a decrease of the coefficients of variation. The
decrease (or increase) has a linear character and the maximum increment is no
greater than 2% of the values considered. It confirms the possibility of using the
model presented in the numerical analysis of stochastic non—homogeneities
(especially interface defects) in composite materials. To verify the applicability of
the model presented this sensitivity should be discussed as a function of interface
defects and elastic properties of composite component stochastic parameters.

Let us note that the SFEM methodology can be applied in further analyses for
numerical modelling of random both uncoupled and coupled thermal, electric or
magnetic fields in various superconducting structures [221,385]. A common
application of the stochastic perturbation technique with computational plasticity
algorithms will enable us to perform modelling of interface debonding in the case
of laminates and fibre-reinforced composites, which will essentially extend our
knowledge of composites behaviour in relation to the existing models
[251,384,386].
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2.3 Homogenisation Approach

Homogenisation methods present some specific approach to such
computational analysis of composite materials, where the homogeneous medium
equivalent to the real composite is proposed. The assumptions decisive for these
methods are introduced in the context of numerous equivalence criteria; usually it
is assumed that internal energies per unit mass stored in both systems are to be
equal. A concept of the Representative Volume Element (RVE) for the composite
is most frequently used together with the corresponding assumption on a scale
parameter relating dimensions of the RVE to the entire composite — it has to tend
to 0, which is usually unrealistic for most of engineering composites. It is evident
now that the spatial distribution of the reinforcement (uniaxially periodic, with
rectangular, hexagonal, triangular periodicity or completely random according to
Gaussian or Poisson distributions) is of decisive importance for the effective
material tensors [52]. There exist some mathematical approaches, where the scale
parameter is assumed to be some small and positively defined [370]. It gives a less
restrictive model, but such an approach has no general corresponding FEM
computational implementations in the existing software. The essential differences
between these two methodologies are especially apparent in homogenisation of
dynamic and transient heat transfer problems, where dispersive effects are
observed under the last assumption only.

Most of the homogenisation methods have one common point — the necessity
of use of the so—called homogenisation functions. These functions are the solutions
of the cell problem on the RVE under periodic boundary conditions, where some
additional conditions can be imposed on external boundaries or/and interfaces
between the composite constituents. Some exceptions can be obtained for the 1D
homogenisation problems, where effective thermal (and/or elastic) parameters may
be derived directly. Let us note that if some further assumptions on composite
microgeometry are introduced (a composite has a specified number of components
in the periodicity cell and the shapes and/or location of the components are given),
then the closed form equations for the effective material properties for either 2 or
3D structures can be derived [6,65,253].

2.3.1 Unidirectional Periodic Structures

Let us consider a unidirectional heterogeneous bar in unstressed and unstrained
state, with periodic structure and with elastic properties piecewise constant. An
example of the structure under considerations is presented below (Figures 2.42 and
2.43).
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Figure 2.43. Unidirectional periodic two—component composite beam

Using the parameter € the displacements and stresses are asymptotically expanded
in the bar as follows [30,43,133,308]:

u'(x)=u’(x,y) +eu' (x,y) +u*(X,y) +... (2.59)
and

c‘x)=0"(x,y)+e0' (X,y) +€°07(X,y) +... (2.60)

where u”(x,y), 0 (x,y) are periodic, too; the coordinate x is introduced in the

macro scale (Figure 2.43), with y in the micro scale (cf. Figure 2.42). Introducing
these expansions into classical Hooke law it is found that

of(x)=0’x,y)+e0' (x,y) +£>03(x,y) +...

ou’ 1 9u’ ou' ou' (260
=e(y){ uxy), 1o (x’y)+e u(x.y) , ou (x’y)+..}

ox g Oy ox dy

whereas the equilibrium equation

st . (2.62)
+y =0
ox

results in
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dc’ 10906’ 9d0' dc' ,00°> 9do’ (2.63)
+e—+—+¢ +€ +..+y7(y)=0
ox € dy ox oy ox ay

Hence, the following zeroth, first and second order constitutive equations are
derived:

0 (2.64)
0= e(y) 2
dy
o E 3_,41 (2.65)
o —e(y){ ~ o
o' = e(y) u' o (2.66)
-y ox dy

Applying an analogous methodology, the equilibrium equation is expanded as

do’ o (2.67)
dy
0 1 2.68
0 +9% 4y(3)=0 269
ox  dy

It is observed that zeroth order displacements and stresses depend on the
macroscale coordiante only 1’ =u’(x) and 6° =0°(x), so that it can be written
that

0 1 2.69
() = e(y{au (), o' (x.y) ] (2.69)
ox dy

Integrating both sides of (2.69) over the periodicity cell of a bar, there holds

0 2.70
(g P @
Q

e(y) ox

which leads to the following description of the homogenised (effective) Young
modulus

Q) (2.71)
dy
g{e(y)

ol —
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Such a formulation makes it possible to derive the closed form equations for the
expected values and covariances of the homogenised Young moduli using classical
definitions of probabilistic moments or by an application of perturbation theory. It
is possible to derive such equations for particular engineering examples only if the
bar has a geometrical characteristics piecewise constant within its length. Let us
consider further the RVE built up with n piecewise constant components defined
on Q by the use of design parameters (e;, A, ) where e;=const. for ye [, and such

that e, e ; for i,j=1,...,n. Hence, the integration in formula (2.71) can be replaced
by

pen — 1 (2.72)
Al

i

M-

e.

! i

where the variables A;, [; denote the cross-sectional area and the length of the ith
structural element. After some algebraic transformations relation (2.72) can be
transformed to

ITe; 2.73)

el —

n
Y Alee,..e e ..e,
i=1

which can be efficiently implemented in any FEM computer program. Let us note
that an analogous procedure can be applied successfully for the transient heat
transfer problem Young moduli are to be replaced here by the relevant coefficients
of heat conduction.

If the general beam structure is to be homogenised, the equilibrium and
constitutive equations should be enriched with transversal effect components but,
for the composite beams having constant Poisson ratio within its length and various
Young moduli, the formulation posed above is quite sufficient for the needs of
computational analyses. Moreover, it should be underlined that the homogenisation
model for 2D and 3D problems is carried out similarly but the effective elasticity
tensor is to be introduced instead of the Young modulus only. As a result, it is not
possible to derive any closed form algebraic equations describing the effective
properties of a composite, which significantly complicates numerical analysis. On
the other hand, the randomness in multidimensional composite structures appears
usually in their geometry, too, which must be implemented in the FEM analysis
using some special finite element types.

Finally, considering further applications of the homogenisation approach in the
elastodynamics of engineering structures, the effective mass density of a composite
can be derived according to the spatial averaging method as [28,265]
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1
(eff) —
p= |Q !J;P(y)dY- (2.74)

Let us mention that this relation is used for any space configuration and
periodicity conditions of a composite. Since that, having a homogenised
elastostatic problem, especially in random case, further extension to the
elastodynamic analysis in the context of a stochastic second order perturbation
technique does not seem to be very complicated. The expected values for the
effective Young modulus can be obtained by the second order perturbation second
probabilistic moment analysis as [162]

B too, " o
ERD )= [0 )+ 80T () + LA A D () ) )b (375

—oo

Using classical probability theory definitions and theorems

Jp ()b =1, [ Abpg(b(y))db=0 (2.76)

—oo

JAD AV py bty )b = Covlp’.b'); 1<rs<R @

one can determine that
E[e(eﬁ) (y)]= e(ejf)O (y) + %é(eﬁ)'” (y)COV(br ’bx) (278)

Further, using the analogous methodology the covariance matrix for the
effective Young modulus Cov(e("ff ) ) is derived

Corel:ef )= Tl ()~ () el ) - 7)) b, )t

—oco

and, using the classical perturbation approach, there holds
400
= [0 () + Ab, e (y)+ L Ab, Ab, T (y) = e (y))

X (6470 (y) + Ab, T (¥) + 1 b, Ab, ST (y) =l (1) Y by, ) by,

After all possible algebraic transformations and by neglecting the terms of order
greater than the second, it is obtained that
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oo
Covle; et )= Ab el (y)Abe T (y) g(b,. b, )dbydb, 279

—oco

=/ (y)el" " (y) Cov(b, . b,)

For the particular case of the two—component composite structure there holds

Jen & (Al + ALy ) eey (2.80)

Al Al T
7111 + 7222 e, Al +eAyl,

Let us consider the case of a 1D bar structure with two homogeneous
components having deterministically defined geometry (cross—sections and
lengths) and with Young moduli assumed to be the input random variables. The
zeroth, first and second order derivatives of the effective elasticity with respect to
the Young moduli of the composite constituents are obtained by analytical
derivation:

e  zeroth order components

o0 _ (AL + AL Ele, [Ele, ] (2.81)

Ele, |A L + Ele, JA,L,

e first order components

ae(ejf) B Alll(Alll +A212)E2[€2] ae(eﬂ) _ Azlz(Alll +A212)E2[€1]

de,  (EleJap +Ele Y des  (Ele,Jod,+ EleJaL (2.82)

e second order components

9’e'" _—2ALAL (AL +AL)E e, ] (2.83)
de? (Ele, JAL, + Ele, AL )

9" _ —2AL AL (AL +AL)E[e] (2.84)
de? (Ele, JAL, + Ele, AL )

32" 2ALAL(AL + Al Ele, [Ele, ] (2.85)

de,de, - (E[e2 ]Alll + E[el ]Azlz )%

Then, the resulting covariance matrix of the effective elastic behaviour for the two
component composite structure is described as follows:
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o e Jetel
Cov(el(eﬁ) ,el(eff))z Covle, e, ) —
de, Oe, (2.86)
e el :
Cov(el(fff) oS )= Covle,,e, ) ——
de,  Oe,
e Jolell)
Cov(e;eﬂ) e ): Covle,,e, ) ——
de, Ode,

To obtain the stochastic finite element model let us introduce the displacement
field approximation. The zeroth, first and second order stiffness matrices for the
homogenised bar structures may be written out by analogy to the previous
considerations:

. zeroth order stiffnesses

@ A1 =11 = Am[1 -1
K@ | € =Y 0 2.87
! -1 1 % (-1 1 (2.87)

with m denoting the total number of bar intervals with constant cross—sectional
(m) ,
area A" ;

. first order stiffnesses
K@e = K :é 1 -1
e 1|-1 1
(eff) (eff) _ (2.88)
K @A — K _¢ 1 1
JA [ |-1 1
K@ = K@ ~ e“al1 -1
ol ? -1 1

° second order stiffness



Elasticity problems 77

K(eﬁ-)ve(cff)e(fff) _ 2K =0 K @44 — 0K

8(6(—M - ’ aAZ
K@ — 2°K“) o 2@ Al 1 -1
a Eal R (2.89)
e KD 11
oA 1l-1 1

K@ _ 9K A |: 1 —1:|

il B
K @A — 9K B et |: 1 _1:|

Aol 17 |-1 1

Hence, the canonical set of the second order SFEM equations can be rewritten as
follows:

K @0q 0 = Q° (2.90)

K 0q (@ = _K ()7 g0 (2.91)

K@ 0g @ — _2K(qﬁf),rqwff),scov(eﬁeﬁ')’ eﬁfff’)) (2.92)

which makes it possible to compute q“/”°, q'/" and q‘“”" and to calculate the
first probabilistic moments of displacements as

E[q(eﬂ)]z q“’ +%q(eﬂ),mcov(e’(_eﬂ)’e;eff)) (2.93)

Cov(q(eﬂ)r,q(ejf)s )= q<eﬁ'),rq<eﬁ'>.sCov(eieﬁ» el ) (2.94)

The expected values and cross—covariances of the stresses are obtained in
comparison to the heterogeneous model as

E[G’;eﬂ)e] (2.95)
={Ci(jzjl§‘)(e)0(q(6ff)0 +1 g +Ci(jzf,f)(””q(eﬁ”s}B,E;)Cov(eﬁeﬂ), elel)

and

COV(O-i(jeﬂ')e’Gl(jefj")f'): BOBL I Cov(el), ey

)(e)0 0 ), off ), R F(f).s  (eff )0 0
X{Cl;ijl?‘ )e) C;jijlﬁl‘l)(f) q(eff) rq(eﬂ) S 4 Cl_(ﬂecjl?)(e) rq(j%)(f) Yq(eﬂ) q(eff) (2.96)

(eff Ye)r (efF )0 (eff s (effI0 , ~(eff Ne)O (eI F)r  (eff s
cl ct +CiOocs q

(eff )0
ij ijmn q q ijmn qeﬂ }

The first computational example deals with Young moduli defined as
deterministic function and cross—sectional area being a random field, while in the
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second Young moduli of the constituents are only randomised. Due to the
homogenisation method presented, the effective Young modulus is obtained in the
form of a random field in both cases. Since the fact that homogenisation is only the
intermediate tool to analyse composite structures, the expected values and standard
deviations of displacements for homogenised structures are compared against those
obtained for real, multi-component structure models.

The results of these analyses make it possible to modify the theoretically
established probabilistic homogenisation algorithm to approximate expected values
as well as covariances in the most efficient way. Neglecting the fact that effective
material characterisation presented above is derived assuming periodicity of a
composite, we try to use this approach in composites having small number of the
RVEs on their lengths.

The first numerical experiment deals with the homogenisation of a beam
clamped at both sides and subjected to uniformly distributed vertical static load
(see Figure 2.44), analogously to the computational illustration demonstrated in
[208].

Q(x 1)
VNN N TN N NN

v
| L2 | L2 |
| | |

Figure 2.44. Clamped beam homogenised
Young moduli of the composite beam constituents discretised here by the use
of 100 finite elements, are assumed to be deterministic variables, so that
eile;={1.00; 1.25; ...; 3.00}, while e,=2.0 GPa and v;=v,=0.30. The mesh nodes

are numbered sequentially from the left to right edge. The cross—sectional area of
the beam A, is an input random field defined as

E[A, ]= A°(1.0+0—I;3xr } r=1,..50 and A’=5.0x 107

w(A, A )= exp(—@} 2=0.10;00=0.07; r,s =1,....100

Other data are taken as follows:
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Q(x,)= f+7A° for £=49.61 and y=7.7126
while
1x2 = Ix3 :ﬁ(Ar)z’ le :Ix2 +I~c3’ ﬂ :% ; L=1O

It is observed that starting from deterministically defined Young moduli the
effective Young modulus random field is obtained as a result of the cross—
sectional area randomness.

The main purpose of the SFEM—based tests is to verify the variability of the
two—moment statistical response of the structure with respect to probabilistic input
random fields. The results of the analysis are collected in Figures 2.45-2.48. The
first two figures report expected values (vertical axes) as functions of location
around the midpoint of a beam (horizontal axes); variable NN denotes here the
node number where node 51 is the central point. The models outlined in the legend
correspond to different composite configurations related to e,/e, value — model 2R
is equivalent to computational analysis of the beam in its real heterogeneous
configuration with the Young moduli relation taken as 1.25. Thee data labelled as
model 2H denote SFEM analysis results for the same homogenised model. The
data obtained for model 1 denote the homogeneous beam withe;=e;, while ‘j” from
‘model jR’ or ‘model jH’ is equivalent to the relation taken from the set
{1.00;1.25;...;3.00}, accordingly.

E[uj

e

3.8E-02 T e

— — — Model 1

—— Model 6R
—1— Model 6H
—a— Model 7R
3.0E-02 —=aA— Model 7H
—O— Model 8R
—@— Model 8H

3.4E-02

2.6E-02 —&— Model 9R
—14 —o— Model 9H

2.2E-02 -

1.8E-02 +—— T NN

M 43 45 47 49 51 53 55 57 59 61

Figure 2.45. Expected values of the beam displacements
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Figure 2.46. Expected values of the beam displacements
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Figure 2.47. Standard deviations of the beam displacements
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Figure 2.48. Standard deviations of the beam displacements

Analysing the results presented in Figures 2.45 and 2.46 as well as 2.47 and
2.48 it is seen that the homogenised structure approximates the real one with
satisfactory precision, which is observed especially for smaller values of the
relation e;/e;. It can be seen that this approximation effectiveness has the same
character for the expected values and standard deviations of displacements
analysed. It is characteristic that while probabilistic moments of structural
displacements are symmetric for symmetric boundary conditions imposed on the
homogenised beam then for a real composite beam this field has not the symmetric
character at all with greater values under the weaker part of a beam. Further,
relating standard deviations to the corresponding expected values, it is observed
that output coefficients of variance for displacements are equal to 0.05 (in real and
homogenised beam) which, taking into account limitations of the perturbation
technique, enable one to confirm the usefulness of this methodology for such an
analysis. It should be underlined that neglecting the bending effects in
homogenisation procedure has no effect on the differences observed because the
Poisson ratio of both composite components is the same while the 3D beam finite
element used is quite appropriate for that analysis.

Two-component linear elastic composite bar is built up with two homogeneous
components with the following material and geometrical data: E[e;]=3000, A,=4,
1;=15, E[e;]=2500, A,=2, [,=10 are considered (see Figure 2.49). The covariance
matrix of Young moduli variables is assumed to be equal:
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m@,,@:[

90,000 75,000 3
x10°
symm. 62,500

while the external loads Q;=200 and Q,=250 are applied to the structure:

1 6 12
\
[ | —
I Q Q-
L 1 \ L, \

Figure 2.49. Two—component bar structure

The expected value and the covariance matrix of the effective Young modulus
are calculated first and next, probabilistic moments of displacements and stresses
for the original composite are computed. We compare these results against those
determined for the homogenised structure. The input data and the results of
computations are collected in Table 2.7 given below — the components of
covariance matrix are equivalent to 10% standard deviation of the input Young
moduli according to the following relation:

Cov(ei,ej):|: of 0102:|

symm. O,

Table 2.7.
Probabilistic data and intermediate results for computational experiments
Model | Input data Input data
no (1* probabilistic moments) | (2nd probabilistic moments)
C ( ) 90,000 75,000 <10°
_ ovie, e, )=
1 Ele;,e;]={3000,2500} symm. 62,500
41,649 16,659
(effh_ Covle! ' )= 0’
2 E[e'"]=2857,1437 ( ) symm. 6,663
, , 90,000 75,000
(e Covle! el )=|"" T Ix10°

Next, the first two probabilistic moments of horizontal displacements are
analysed along the bar. The results obtained for the stiffer part show better
approximation by model 2 (with covariance matrix homogenised), while for a
weaker part by model 3 (with original covariance matrix). Quite a different
situation is observed for the standard deviations — those resulting from model 3
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approximate those obtained in model 1 very well, while the results of model 2 are
definitely smaller.

Table 2.8. Expected values and standard deviations of beam displacements

Node Expected values Standard deviations

Number (Model 1 |Model 2 |Model 3 Model 1 Model 2 Model 3
(NN)

1 0 0 0 0 0 0

2 0.0789 0.0825 0.0829 7.81E-03  |5.89E-03 8.61E-03
3 0.1578 0.1649 0.1659 1.56E-02 1.18E-02 1.72E-02
4 0.2367 0.2474 0.2488 2.34E-02 1.77E-02  [2.58E-02
5 0.3156 0.3298 0.3318 3.13E-02 [2.35E-02 |3.45E-02
6 0.3945 0.4123 0.4147 391E-02 [2.94E-02 |4.31E-02
7 0.4734 0.4947 0.4976 4.69E-02 |3.53E-02 |[5.17E-02
8 0.5786 0.586 0.5895 5.73E-02  [3.80E-02 |5.97E-02
9 0.6838 0.6772 0.6813 6.77E-02  |4.06E-02  [6.76E-02
10 0.7891 0.7684 0.7732 7.81E-02  |4.32E-02 |7.56E-02
11 0.8943 0.8596 0.865 8.85E-02 |4.59E-02  |8.36E-02
12 0.9995 0.9509 0.9569 9.90E-02 [4.85E-02 [9.16E-02
13 1.1045 1.0421 1.0487 0.1094 0.0511 9.95E-02

Taking into account the results of computational experiments presented in Table
2.8, the following algorithm is proposed to model strictly periodic composite
beams using homogenisation—based SFEA.

Input random variables definition
Elb,]. Covlp’.b*)
Initial boundary value problem

€ £ __
0ty =0
— solve:
K(S)Oq(g)o — QO
K©0q®" = _K®7q®°
K(S)Oq(e)(Z) _ (_ K (E),rq(s).s _ K(e),rsq(s)o k‘ov(b’ b )
Evaluation of effective Young moduli parameters
E[e(eftf') lCov(e‘eﬁ ol )
Homogenised boundary value problem:
(eff) (eff) _
C,; v =0
1%t SFEM solution (zeroth order homogenised displacements):
— solve:

K(é’ﬂ)oq(eﬁ)o _ QO
[1] -

(eff )0 (eff ).r _ (eff).r o (eff )0
K q; " =-K LISy
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(€0 (e )2) _ (eff)or py (eff )s (effurs  (ef)0 ef)r (eff)s
K qy —(_2K q; " -K qdp; )Cov(e ,€ )

2™ SFEM solution (first and second order homogenised displacements)
— solve:

(eff )0 (eff )O _ 0
K*7q;35 " =Q

(eff )0 . (eff)r _ (eff ),r o (eff )0
K q,  =-K qp)

K(eﬂ)oquj]f)(Z) — (_ 2K(€ﬁ‘),rqg]]7”),s _ K(eﬁ),rsqgf]f)o )Cov(b’ b )
Final evaluation of displacements probabilistic moments
(eff) ]_ )0 L ()2
E[‘],B =dpm tdpm

o) ) Y (el (eff)us r
Cov(q( "q" )—qae[zl q;{/Z]JCov(b ’bs)

o

Figure 2.50. Algorithm of homogenisation-based SFEM analysis

It should be underlined that such a stochastic second order homogenisation
scheme has its basis in the computational observations only. However its results
are in good agreement with those observed for the real composite model subjected
to the same boundary conditions.

2.3.2 2D and 3D Composites with Uniaxially
Distributed Inclusions

This class of composites is equivalent to all 2D and 3D periodic heterogeneous
structures where isotropic homogeneous constituents are distributed periodically
along the x; axis, which in practice is observed in case of the periodic laminates.
Further, it should be mentioned that the effective elasticity tensor components valid
for these structures can be reduced to the periodic bar structure shown above only
if the 1D case is considered. The following system of partial differential equations
is considered here to calculate probabilistic moments of the effective elasticity
tensor [159]:

(o2 st v, sm 9

According to the general theory, the homogenised formulation of the problem has
the following form:

(Ci(jzjljr)uk’,),j:fi(x) u(x):u"(x), xe 0Q. (2.98)
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where the effective coefficients C(Zy’ are given by the formula. The
ij

homogenisation functions xk[(y) are determined as the solution of the local
problem on the RVE

33 Cijkl (y3 )ail (ka" )+ Cijmn (y3) =0;xeQ (2.99)
J

for any 3™ (y) periodic on the RVE. Since the heterogeneity distribution is
observed along y_ axis only, a solution should be of the form 2" (y)=7""(y;). It

yields the following problem for determination of %™ (y})

ai ., (y3 >aay3 (x;j" )+ c (yg) =0, xeQ (2.100)

for any x'"”(yg) being periodic on the RVE. Therefore, (2.100) is ordinary

differential equations system, which can be solved explicitly as

C,'3/<3(Y3)761?f’31 +Crn (73)= A . (2.101)

If the elasticity tensor components Cw are invertible, then

Zl?’fg = _{ Ck3j3 }_l Cj3mn + {Ck3j3 }1 Aj (2.102)

The periodicity condition results in <x'§"> =0 which introduced in (2.102) yields
3 /o

0= _<{Ck3j3 }_ICJ'Smn >Q + <{ Ck3j3 }_1>9Aj (2.103)

Therefore

(2.104)

A = <{ Ci3k3}_1 >; <{ Ck3j3}] Cj3mn>

Q

and there holds

_ B - B 2.105
lllc’jg=_{Ck3j3}lcj3mn+{Ck3j3}1<{Cj3q3}1>91<{C43p3}1Cp3mn>g (2109
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Taking into account that the state functions depend on y; axis only, the effective
parameters are expressed as

C(fff) :<C +C kl > (2106)
ijkl Q

ijkl ijm3°¥ m,3

Finally, the homogenised elasticity tensor components are given by

Ciil” =(Cu ) - <Cijm3{cm3p3 F'Cpmu >Q

+ <C,~jm3 { Co3p3 }—1 >Q <{ Cins }—1 >:<{ Cos }1 Coa >Q (2.107)

In case of isotropic and linear elastic constituent materials of this composite, it is
obtained after some algebraic manipulation [159,177]

<1—2v>2
. v 1-v)e 1-2v)e 1-v
cip e =(e ) (2 o e
(+v)i-2v)/, 1-v? [o [A+v)1=2v)
(I-v)e o
cf = 1
(1+v)(1-2v) (2.109)
1-vie /[,
<1—2v>
1-v
C(Eﬂ)=c(€ﬁ)=c(€ff)=c(3ﬂ)= Q 2.110
1133 3311 2233 3322 (1 +V)(1 _ 2‘/) ( . )
(1-v)e o

<1—2v>

p of 1-2v 1-v

Cflgz)=C§z’{f=< 2 > —<( )€> +< Q @2.111)
Q Q

(=v) 1-v? (A+v)(i-2v)
(1-v)e o
cen =) = € CeD — o - 1 (2.112)
1212 2121 (1+V) \ s “1212 2121 —1+v
€ | a

while the remaining components are equal to 0. The layered structure analysed in
this experiment has material characteristics corresponding to a glass—epoxy
composite: Ele;]= 84.0 GPa, o(e;)= 8.4 GPa, v,=0.22 and E[e;]= 4.0 GPa, 6(e,)=
0.4 GPa, v,=0.34; the volume ratios are taken as equal. The results of
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computational analysis are collected as deterministic quantities, expected values
and coefficients of variation computed for the particular components in Table 2.9
below.

Table 2.9. Effective materials characteristics

Effective elasticity Deterministic Expected value Variation
tensor components

Ci111=Coon 29.2316 GPa 29.2260 GPa 0.0767
Cazz 10.4662 GPa 10.4566 GPa 0.0954
C1133=C3311=C0335=C3320 6.1479 GPa 6.1424 GPa 0.0954
Ci12=Cnny 34.3657 GPa 34.3601 GPa 0.0794
Ci21=Caip 50.7785 GPa 50.7785 GPa 0.0936
C305=Capp» 51.5489 GPa 51.5608 GPa 0.0968

Comparing the results presented in Table 2.9 it is seen that there is no
difference between the deterministic result and the corresponding expected values
for effective tensor components, while the coefficient of variation has values
generally smaller or almost equal to the corresponding input variables value 0.1.
To verify the variability of the tensor with respect to input Young moduli expected
values, the MAPLE plot3d option for E [C;i’zf;] and a(c§§§g>) has been applied; the
remaining components show almost the same tendencies. The range of variability
for both the composite components Young moduli is taken as £10% of the original
values and, as can be observed in Figures 2.51 and 2.52, Young modulus of the
weaker material appears to be the decisive parameter for the overall elastic
characteristics of this composite in terms of a homogenisation method applied.
Further, it can be noticed that an increase of the coefficient of variation oc(Cgfzf;)
results from decreasing matrix Young modulus, while the inverse relation is

observed in case of E [ng; .

Be-+1094
Se-+105]
He-+H10%H
Se-+H10%

4e-+10%

74010
B+l 910 1,557

Figure 2.51. Expected values for C,3,; component
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99+D1DBE+D1D

Te+d11

Figure 2.52. Coefficients of variation for C,3,; component

It should be underlined that the model for one dimensionally distributed
inhomogeneity is valid after some minor simplifications for the heat conduction
homogenisation of the same composites, since probabilistic numerical algorithm
has a quite general character.

2.3.3 Fibre-Reinforced Composites

2.3.3.1 Algebraic Equations for Homogenised

Characteristics

It should be emphasised that the homogenisation procedure can be applied to
the fibre—reinforced composite with anisotropic consituents, too. The effective
elasticity tensor in terms of different transverse and longitudinal Young moduli and
Poisson ratios can be calculated explicitly using the Mori—Tanaka or the self—
consistent analytical homogenisation technique as follows [18,31]:

o, [» 1 I 0 0 0][g,
0, k+m k-m 0 0 Of|&y 2.113)
Oyl k+m 0 0 O0]]|&s,
Oy B m 0 0f] €y
O3 sym. P 0]l&y
O P)

where the following description for the constants k, I, m, n and p is applied:
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20 +enps + P0)
_m,m,(k, +2m, )+ k,m,(c,m, +c,m,) (2.115)
" e 2m, Yem, m, )

o Cokg b +m, ) +e,m, (k, +m,) (2.116)

Cf (km +mm)+cm (kf +mm)
| = Cflf (km +mm)+cmlm (kf +mm) (2117)

Cf (km +mm )+cm (kj +mm)
I, =1 2.118
nzcmnm+cfnf+(l—cflf—c l )—f n ( )

m“m
kf _km

There holds for matrix and fibre

[ -1
GT ET EL

1="2kv, (2.119)

2
n=E, +4kv; :EL+%

m=G,,p=G,

where ¢, and ¢,, denote fibre and matrix volume fractions of a composite measured
in the direction transverse to the fibres. The indices L and T denote longitudinal
and transversal elastic characteristics for the components. It can be observed that
closed form relations for effective elasticity tensor components are obtained in this
case without the necessity of a cell problem solution.

Two alternative ways of fibre—reinforced composite homogenisation have been
proposed below. Since the fact that the computational illustration for the SFEM
solution of the cell problem is shown in [192], then only the second order
perturbation based model is discussed here. The composite taken to illustrate
probabilistic moments of relevant material properties is exactly the same as in the
previous example. The final equations for the effective characteristics for a layered
and fibre—reinforced composite do not contain any shape parameters — different
forms of the reinforcement lead, according to some mathematical considerations, to
different equations rewritten however for the same parameters: material properties
and volume ratios of the constituents only. That is why such a comparative studies,
especially in terms of the random spaces of the material properties analysed, are
important.

The deterministic and the corresponding expected values as well as coefficients
of variation are collected in Table 2.10 for the components of the effective tensor k,
I, m, n and p, separately. Generally, it can be observed that, as previously noted,
expected values are almost equal to relevant deterministic quantities and the
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resulting coefficients of variation are almost equal to the corresponding input
probabilistic coefficients. Further, comparing the data collected in Tables 2.9 and
2.10 it can be noted that the layered structure has greater effective elastic
characteristics than the fibre-reinforced composite with the same constituents —
this observation is very important considering practical applications and
optimisation of composites.

Table 2.10. Effective materials characteristics

Effective elasticity Deterministic Expected value Variation
tensor components

k 6.8350 GPa 6.8216 GPa 0.0902

l 5.2983 GPa 5.2898 GPa 0.0909

m 3.5892 GPa 3.5840 GPa 0.0927

n 46.9052 GPa 46.9000 GPa 0.0938

p 4.0195 GPa 4.0121 GPa 0.0907

Further, see Figures 2.53—-2.62, the parameter variability of the expected values
of the effective parameters k, [, m, n and p (Figures 2.53, 2.55, 2.57, 2.59 and 2.61)
as well as their variances (Figures 2.54, 2.56, 2.58, 2.60 and 2.62) is computed
with respect to expected values of the Young moduli of the components. It is seen
that the expected values of all these parameters show greater sensitivity with
respect to stronger material Young moduli; all the changes are significant
especially for decreasing values of both moduli. As can be predicted from these
figures, the sensitivity gradients of all the parameters have positive signs — an
increase of any effective constant k, I, m, n and p results from the increase of
Young moduli of fibre or/and matrix. In further computational studies, the
probabilistic moments so computed may be applied in the FEM-based
probabilistic computational simulation for an engineering composite by using the
Monte Carlo simulation technique or, as is done in the first example, the SFEM
approach.

Ge+1154
1e+1163
2e+1163
4e+1163
Ge-+H1163
Ge-+H1163
2e+1163
2e+H]163
4e+0163
Ge+H1163

B
S

Figure 2.53. Expected values of the component k
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Figure 2.54. Variance of the component k
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Figure 2.58. Variance of the component m
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Figure 2.59. Expected values of the component n
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Figure 2.61. Expected values of the component p
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2.3.3.2 Asymptotic Homogenisation Method

2.3.3.2.1 Deterministic Approach to the Problem

The homogenisation of the n—component periodic composites in the context of
linear deterministic elastostatic problem is studied here; the effective modules
method worked out previously for two—component heterogeneous media is now
extended on the n-component composites to homogenise multi-component
materials in general form. The approach proposed enables particularly, as is
demonstrated, to calculate effective elastic characteristics for composites with
some interphases between the constituents. As it is known, the interphase in
engineering practice may be considered as the next homogeneous component of
the composite with small volume in comparison to the rest of a structure that
increases contact between reinforcement and matrix and can be crucial for the
composite macro—behaviour [59,255,270,314]. One of the interphase
computational modelling method is based on the special (both elastic and
elastoplastic) interface finite elements [238,260,318].

On the other hand, there are some approaches in the mechanics of composite
materials, where the interphase is the hypothetical region containing all interface
defects that appear between the original components of a composite. Usually, the
interphase is introduced with thickness and material parameters constant within its
region; ultrasonic emission seems to be the most efficient experimental method in
this field. Numerical studies based on this formulation and collected in this chapter
show the sensitivity of the periodic composite effective parameters to
strengthening and weakening, in the context of elastic parameters, of the
interphase. Due to the fact that the observations correspond with engineering
practice, it may confirm the usefulness of the method to homogenise n—component
heterogeneous media.

Very important aspect of the method proposed is that the effective modules
method in present extended version enables to homogenize the composite materials
with the microdefects appearing in the constituents — they have the dimensions
relatively small with comparison to the components. Next, we observe that the
method presented can be relatively easily transformed to the probabilistic case
where material properties as well as the periodicity cell geometry may be treated as
random; the Monte Carlo simulation method is the most recommended technique.
This formulation may be used to formulate and to compute the deterministic or
stochastic sensitivity, in a phenomenological or structural sense, to both material
and geometrical parameters of the composite that enable one to find out the most
decisive parameters for the entire computational homogenisation procedure.

The linear problem of elasticity is formulated for the n—component composite
shown in Figure 2.64 with the Representative Volume Element given in Figure
2.63 as follows:
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do;;

&x./
G,-f-nj =p;;Xxed Qg k=12
uf =0;xed Q, (2.120)

O'if = C;fk/ (X)Elfz

e _ 1. ¢ €
| € =7 U T

868
% 28
Olfe)e)

Figure 2.64. The RVE of plane composite

Let us assume that all interfaces of the composite are perfect in the sense that

ls]=0. fo,n"]=0 (2.121)

[/}

where the symbol [.] denotes a jump of the respective function values at the
interface. The homogenisation problem is to find the limit of solution u® with €
tending to 0. For this purpose let us consider a bilinear form ag(u, V) defined as
follows:

a(u,v)= [ Cyy (f) £;(u) £, (v)dQ (2.122)
Q

and the linear form:
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L(v)= [Fv,dQ+ jpivid@Q) (2.123)
Q Ky

both in a Hilbert space
v={ive @) v, =0} (2.124)
characterised by the norm

”V"2 = J-gii(v)eij (v)dQ (2.125)
Q

A variational statement equivalent to the equilibrium problem (2.120) is to find
u® eV fulfilling the equation

a*(u,v)=L(v) (2.126)

for any ve V. Let us introduce for this purpose a space of periodic functions

P(Q)= {v,ve (H : (Q)y} so that the trace of v is equal on opposite sides of Q. Let

us denote for any u,ve P(Q)

a,(u,v)= [ Cyy (), (e, (v)dQ (2.127)
Q

and introduce a homogenisation function ¥, € P(€2) as a solution for the local

problem on a periodicity cell:
ay((l(ij)k +}’j5ki)nk,w)=0 (2.128)

for any we P(Q); J,; denotes the Kronecker delta while n, is the unit coordinate
vector. Assuming finally that:

Ciu € L~ (%) (2.129)
Cijkl = Ckl,jj = C_,';k/ (2.130)
3¢, > 0; Ctjklét:igk/ 2 C()gijéij > v[,jét:/' = éji (2.131)

we may introduce a homogenisation theorem as follows:

Homogenisation theorem
The solution u® of problem (2.126) converges weakly in space V
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£

u® Su (2.132)

if the tensor C;k,(y) is Q-periodic and its components fulfil conditions
(2.129-2.131). Solution u is the unique one for the problem

ueV: D(u,v)=L(v) (2.133)
for any ve V and
D(u,v)= [ D€, Wwe, (V)dY (2.134)
Y
where
Dukl |Q| y «?C(u)p + y,5pj) n,, (Z(kl)q + ylsqk )nq) (2.135)

As a result of this theorem, a limit for € — 0 gives a homogeneous elastic material
described by the tensor [163]:

C;Z]zy) |Q| ,[( Cini (V) +Cp )€, (X(k/) (Y))}i (2.136)

The most important result is that neither the local problem nor the statement
(2.136) really depend on the stress boundary conditions since that solution obtained
has a general character. To show formally these results, the local problem is
rewritten in its differential form

a%j(cijkl(f)sk/<uf))+ﬂ=0 1=yeQ;uf =0 for ye d Q (2.137)

Next, similarly to the stochastic perturbation approach, an asymptotic expansion is
employed in terms of the parameter € as follows:

uf (x)=u”(x,y)+eu’ (x,y) +£u® (X,y) +... (2.138)
where u" (x,y) are periodic in y with a periodicity cell Q. The main idea of this

expansion is presented schematically in Figure 2.65: to better illustrate the meaning
of (2.133) only a quarter of the composite is shown.
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Figure 2.65. First order asymptotic expansion of displacements in a composite

Let us note that differentiation separates the coordinates x and y, so that

g;(V)=¢; (v)+ el (v)

€ 7Y

where the strain tensors £ (V) 8 7 (v) correspond to small deformations

ooy L[ dv dv; voon 1[IV v,
£1(v) = 5{&j+8xi} £)(v) = {@Uy}

Thus, (2.132) can be rewritten as follows:
-2 -1 ) (1) 2,@ 4 _
(e L +¢ L2+L3)(ul. +&7u; )+E—O

where

d ou
Lu, =——| Cyu (y) 25
1 9 j[ ijki z )

ou J ou
Lyu; =Cyy(y)—— (&yk J—'—ay_(cijkl (y))gk
I j 1

Ju
Ly, = Cy, (y)gj(j)

(2.139)

(2.140)

(2.141)

(2.142)

(2.143)

(2.144)

Next, we equate to 0 the terms with the same order of €, obtaining an infinite
sequence of equations. The relations adequate to its zeroth, first and second orders

can be written as



Elasticity problems 99

Lluim) =0 (2.145)
Lu +Lu® =0 (2.146)
Llu,-m +Lu +L3u,.(°) +F, =0 (2.147)

The displacements fields u”, u!" and u® can be found from these equations
recurrently only if X and y are independent variables. Let us note also that the
equation

Lu,+P =0 (2.148)
with u; being Q—periodic function has a unique solution for

1 (2.149)
(P) =@£elidy =0

Further, if the unique solution u(x,y); x€ € of (2.148) is constant then for all x
(where x plays here the role of parameter) we have u, = const. Considering this

fact it can be obtained that
u® (x,y) =u,(x) (2.150)

which can be observed in Figure 2.65 as well. It can be observed that the first term
of the expansion of u does not depend on the micro variable y and can be
considered as a mean displacement altered by the higher order terms only. Thus,
(2.146) takes the following form:

d d 2.151
Lt (5.3 + = (C () 1l ()) =0 @D
Y, ox,
The solution is obtained by separation of X and y
(2.152)

d
u® (x,y) =x(k,>,-<y>g(u;"><x>)+u,-(x)
1

The last two equations give the formulation for the —periodic functions y ,;,; (y)

J a%(kl)m (y)] 0 (2.153)

gj{cm(Y) o, +§y_j<cijkl(y))=0
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which completes our consideration of general homogenisation method for linear
elastostatic problems.

It is relatively easy to see that the local problems for homogenisation functions
Xun: (y) reduce to the equations given above for any region €2, where 1<a<n

for the so—called fibre—like composite materials where one component is placed
into the next one, etc. Let us denote by T’ _,,, the interface between components

€Q,.; and €. Then the following conditions are true for a=2,...,nand xe [, :

[x¥]=0 (2.154)
and
= 2.155
Oj (Z(pq)) [ pqlJ ]r n;= F(pq)i r ( )
(a-l,a) (a-1,a)
— (a) (a-1) .,
[Cl’q"j]r(ufl' ) =C paij _Cpqij ; X€ r(u—l,11) (2.156)

Summing up all the considerations on the homogenisation problem (2.126), we
compute the effective elasticity tensor components given by (2.136) using the
homogenisation functions y,,, being a solution of a classical well—posed

boundary value problem with periodicity conditions on the external boundaries of
Q. The stress boundary conditions are equal to the difference of constitutive tensor
components at the particular composite interface. The variational formulation
necessary for a finite element formulation of the local problem can be introduced
as follows:

Y [Couen i) e ()d@==3 [0, (e h1vidl + [ fidQ (2.157)
Q

a=lQ, a=2T 0

which by neglecting body forces leads to

zlg.[cuklgkl(?((pq)) i dQ_ 221_ .[F(pq),v,dl“ (2.158)
a (a-l,a)

Having determined the homogenisation functions for the n—component composite,
the effective elasticity tensor components from (2.136) are calculated as the result.

The general configuration of the n—component composite denotes that there are
m interfaces in the periodicity cell where me N and m =n—1. It can be observed
that for coherent components, as was assumed at first, the case of m=n-1
(minimum value of m) is equivalent to the fibre—like composite characterised in
the previous section or the composite where n-1 components are embedded into



Elasticity problems 101

one matrix. In that case the variational formulation of the homogenisation problem
has the following form:

n—1

Z IC,]kzskz(Z<pq>) £;(v)dQ=- 2 [Fopvi (2.159)

l—‘(lu)

Moreover, it can be seen that the n—component composite in a general
configuration generates, due to the component permutation scheme, the bounded
set of (n-1)! various effective elasticity tensors. If some components are disjoint,
the total number of these subsets must be included in the permutation procedure. It
would be interesting to calculate, due to the homogenisation method presented, the
upper and lower bounds of the effective elasticity tensor components for such a set
of permutations.

Next, it is observed that in the general case the effective elasticity tensor
components can be calculated by the following modification of (2.159):

021 Q.[CIJklgkl(Z(pq)) §(V)dQ =~ 21 FJqu)Vdr (2.160)

where the RHS summation is carried out along all interfaces detected in the
composite periodicity cell. Further, if any interface shows some finite number of
nonsmoothness, the integration over such contour to be replaced with the sum of
integrals defined on partially smooth curves composing the interface.

Finally, it is observed that the effective modules method of homogenisation
formulated by (2.158) — (2.159) enables one to calculate effective properties for
the composites including microdefects or interface defects; it can be done by
equating the appropriate material characteristics to O for these regions. For this
purpose, the computational procedure applied in numerical experiments can be
linked with the program for digital processing of composite cross—section images.

Now let us consider the Finite Element Method discretisation of the
homogenisation problem. Let us introduce the following approximation of
homogenisation functions y,,,, (i,r,s=1,2) at any point of the considered

continuum € in terms of a finite number of generalised coordinates g,,,, and the

shape functions ¢,,
Xosyi = Pialrsya » ir,s=12, a=1.,N (2'161)
In the same way the strain €;(y,,,)) and stress 0;(¥,,,) tensors are rewritten as

& (l(m) = BijaQ(m)a (2.162)
Oiiirs) =0y (?C(m) = Cijklgkl (Z(m)) = Cijleklaq(rx)a (2.163)
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where B,, represents the shape functions derivatives. Introducing (2.162) —

klow
(2.163) into the virtual work equation in its variational form it is found that

.!lgl(r.v)i,jcijklx(rs)k,l dQ = 2 J.(Sx(rs)i [F(r,r)i:'l"p dr’ (no sum on r,s) (2.164)

p=2T,

Furthermore, let us define the composite global stiffness matrix as

E E
_ (e) _
K.z _Z{Kaﬁ =2 JC::/HB' BkwdQ (2.165)

ijo
e=1 Q,

Using this notation in (2.164) and minimising the variational statement with
respect to the generalised coordinates we arrive at

K“ﬂq(m')d = Q(m‘)lx (2 166)

with @, , being the external load vector containing the boundary forces given by

(2.155) — (2.156), which is employed to determine the homogenisation function
Xy in three numerical tests for r,s=1,2. To ensure the symmetry conditions on a

periodicity cell, the orthogonal displacements and rotations for every nodal point
belonging to the external boundaries of € are fixed. For the functions y . so

defined we compute the stresses 0 (¥,,,) and average this tensor numerically

over the region Q according to the formula (2.136).

The fibre—reinforced glass—epoxy composite example with an interphase
between the fibre and the matrix is analysed in computational experiments [163].
The microgeometry of the periodicity cell is shown in Figure 2.66, while material
characteristics of the constituents are collected in Table 2.11.

The weaker interphase in our tests may simulate any boundary defects
appearing in fibre—reinforced composites that are caused by the difference in
thermal stresses during the fabrication process in metal matrix composites (MMC)
for instance. On the other hand, a stronger interphase model homogenised
numerically is equivalent to the case when some layer between the fibre and matrix
is introduced to enforce component interface bonding strength.

Generally, 11 groups of computational experiments are performed to compute
the effective elastic and thermal characteristics for the composite considered.
Material properties are increased in the interphase starting from 50% of additional
matrix characteristics with increments equal to 10% for each of the next test group.
Thus for the 6th group the interphase equivalent to the matrix is obtained and for
the 11th the material properties of the interphase are equal to 150% of the matrix
parameters; the results of this analysis are presented in Table 2.12.
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Figure 2.66. Microgeometry of the periodicity cell

Table 2.11. Material data for composite components

Material e v
Glass fibres 72.38 0.200
Epoxy matrix 2.75 0.350

Table 2.12. Effective elastic and thermal parameters

Test no C l(ﬂ"fl ) CI<ILJZ2) Cl(ze_lff;)

1 8.566 3.122 14.577
2 8.815 3.209 14.580
3 9.020 3.278 14.582
4 9.197 3.337 14.584
5 9.338 3.391 14.586
6 9.474 3.445 14.588
7 9.610 3.503 14.589
8 9.761 3.572 14.591
9 9.949 3.681 14.593
10 10.619 4218 14.594
11 11.399 4.940 14.596

Analysing these results it can be concluded that all effective parameters show
some sensitivity to the improved interphase and its material parameters. The

greatest sensitivity is obtained for C\7) and C{/) components, while the smallest

for C7). To obtain more realistic results it will be valuable to introduce
anisotropy in the equivalent parameters of the interphase; in that case the
sensitivity of the C',) component increases significantly. However, neglecting
these disproportions the results computed lead us to the conclusion that the
improved homogenisation method confirms the crucial role of the interphase on the
overall characteristics of the composite structure, which is observed in engineering
practice. Moreover, the variability resulting from computational experiments
confirms generally the usefulness of the homogenisation method proposed. Other
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series of computational tests are done to the visualisation of the homogenisation
functions as well as the resulting stresses and various numerical error estimators.

Figure 2.67. Boundary conditions for homogenisation problems XH
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Figure 2.68. Horizontal components of the homogenisation function ¥,
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Figure 2.69. Vertical components of the homogenisation function Xll
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Figure 2.70. Horizontal stresses in the homogenisation problem XH
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Figure 2.71. Vertical stresses in the homogenisation problem xll
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Figure 2.72. Shear stresses in the homogenisation problem Xll
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: . . . 11
Figure 2.74. Relative error of the stresses determination in the problem 7
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Figure 2.75. Relative error for strain determination in the homogenisation problem %,
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Figure 2.76. Relative error of the strain energy determination 7
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Figure 2.78. Vertical components of the homogenisation function y
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Figure 2.80. Horizontal stresses in the homogenisation problem X
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Figure 2.81. Vertical stresses in the homogenisation problem Xlz
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Figure 2.82. Shear stresses in the homogenisation problem Xlz
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Figure 2.83. Equivalent von Mises stresses in the homogenisation problem xlz
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Figure 2.84. Vortex visualization of the homogenisation function %
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Figure 2.85. Relative error of the stresses determination in the problem 7
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Figure 2.86. Relative error of the strain determination in the problem 7

o

Figure 2.87. Relative error of the strain energy determination X12
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Figure 2.88. Horizontal components of the homogenisation function 7%
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Figure 2.89. Vertical components of the homogenisation function x22
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Figure 2.90. Total values of the homogenisation function Xzz
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Figure 2.91. Horizontal stresses in the homogenisation problem X22
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Figure 2.92. Vertical stresses in the homogenisation problem Xzz
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Figure 2.93. Shear stresses in the homogenisation problem Xzz
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Figure 2.95. Relative error of the stresses determination in the problem 7

Figure 2.96. Relative error of the strain determination in the problem X22
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. . ' . >
Figure 2.97. Relative error of the strain energy determination 7

The results of the computational analysis carried out in this section show that
the effective properties of the composite and, at the same time, the overall
behaviour of the composite, in the context of the homogenisation method, are
sensitive to the interphase between the constituents and its material parameters. It
should be underlined that the interphase, improved in the example presented above,
has small total area in the comparison to the fibre and matrix. It can be expected
that the previous, simplified approach (upper and lower bounds or direct
approximations of effective properties cited above) do not enable us to arrive at
such effects.

Considering the assumption that the scale factor between the RVE and the
whole composite structure tends to 0 in our analysis and, on the other hand, that
this quantity in real composites is small but differs from 0, the sensitivity of the
effective characteristics to this parameter are to be calculated in the next analyses
based on this approach. To carry out such studies, the scale parameter has to be
introduced in the equations describing effective properties and next, due to the
well-known sensitivity analysis methods, the influence of the scale parameter €
relating composite micro— and macrostructure may be shown. In the analogous
way we can study the sensitivity of the effective characteristics of the composite to
the component material parameters but there is no need in this case to introduce
any extra components into the equations cited above.

Further mathematical and computational extensions of the model presented
should be provided to include in the constitutive tensor the components responsible
for the thermal expansion [228,311]. Having computed the effective characteristics
on the basis of Young moduli, Poisson ratios, coefficient of thermal expansion and
heat conduction coefficient [106,163,347] it will be possible to provide the coupled
temperature—displacement FE analyses of periodic composite materials. At the
same time it will be valuable to work out the problem presented in the context of
viscoelastic or elastoviscoplastic material models of the composite constituents
[74,368]. It will enable us to approximate computationally the fracture and failure
phenomena in composites resulting from the interface defects or partial debonding
using the homogenisation approach.
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2.3.3.2.2 Monte Carlo Simulation Analysis

Starting from the formula describing the effective elasticity tensor components,
their expected values are derived using the basic theorems on the random variables
as follows [191]:

Elegh (oo E[(Gk, " (x w)>9]+ E[(C,.jk, (x; w)>Q] (2.167)

The expressions for the variances (and generally covariances) have a more
complicated form than the expectations because the averaged stresses and elasticity
tensor are correlated variables. Therefore

Varlclel (s )= Var(<0'kl (o (x: w)>9 ) (2.168)

+ 2COV(<O'kl (2 (x; a))>Q,<Clj,d x0) )+ Var(<Cijk, (x: a))>Q)

The random homogenisation fields y”(x,w) for general composites, similar to
the deterministic ones, are calculated only numerically. The following probabilistic

stress boundary conditions are imposed on the boundary I, to find the
homogenisation functions:
E F(pq)i ((l)) Tror :|
) (2.169)
= E[ﬂ,(a)) M quni:| + E[/,t(a)) P (np5qi +n,0,; )]
Var F([’ﬂ)i(w)|l"([,,l‘,,) )
(2.170)
= Var(/l(a))h_wm 0y )+ Var(u(a))h_(al'“) (np5q,» +n,0, ))

where M(®) and (W(w) are the Lame constants. If Young moduli of composite
components are considered as input random variables then the expected values and
variances of boundary forces are obtained by separating the RHS into those
components corresponding to €, and €, respectively. After some algebraic

transformations there holds

Elqu)i ('x’('o)J= qui (va ) : E[ea ]_ qui (va—l) : E[ea—l ] (2 171)
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where the operator B, (v(x)) similar to the tensor A, introduced by eqn (2.14)

Pqi
is defined as
V(X) 1

PV =0 vana-avoy T O vy )

and their variances are equal to

Var( (pq)l(x w)) {qu,(v )} Var {qu,(va ])} Var e, ,) -
(no sum on p,q,l) 2.173)

Finally, probabilistic moments of the effective characteristics are derived using
statistical estimation methods, according to which the expected values and the
relevant covariances (computed using the unbiased estimator) of the effective
elasticity tensor components are obtained as

(eff) (eff)j
Elcyn]= ZCM I (2.174)

ColC (@), C) (@)=L Z(C(eﬂ” e Mewn - Eleen]) 2.175)

ypq rsuy ypq upq rsuv
j=1

where C ;;’Z i ( ), j=L,...M are random series of the tensor components obtained

as a result of the generation of numerical random values.

The homogenisation problem presented is implemented into the program
MCCEFF, which is based on the Monte Carlo simulation technique. The
implementation of the MCS has been selected from among many other
probabilistic methods, because this method consists of computer generation of
random variables in the mechanical problem (cf. Figure 2.98) and computing the
sequence of deterministic solutions associated with each variable generated,
similar engineering software is also available [47]. Considering the fact that a
composite structure has a relatively small number of degrees of freedom, a crude
random sampling method is used in the computations (contrary to the Random
Importance or Stratified Sampling methods) [73,125,139].

| Define N, m, a, c, Elel, o(e), E[V], 6(V) |
J
Generate uniform distribution {I e Dy }e 0,m—-1)
Do for k=1,N
I, =al,_, +c(modm)
Enndo

1
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Transform /—x: uniform distribution on (0,1)
Scaling distribution {I} by the parameter m
d
Transform pairwise (x;,x;.1)—=(;,yi.1): N(0,1)
Do for i=1,N

Y, =+/—2Inx; cos2mx,,,
Vi =/~ 2Inx; sin 27mx,,,

Enddo
{
Transform y—e,v
Do for i=1,N
e=E[e]+y0(e); V=E[V]+y;0(V)
Enddo
{
Cutting off e,v distributions
Verify for i=1,N
SI(O <e< oo)=true ; Sz(—1<v <%)=true
Enddo
{
Computations of the total sample length
M=N-K: K=sup(k1,k2);
ky,k; - number of S1,52 negations
Figure 2.98. Algorithm for random numbers generation

However, the most important reason for the MCS application is that the
accuracy of the output variable probabilistic moments estimation does not depend
on the input variable coefficient of variation (as for the SFEM), but on the total
number of iterations performed. Taking into account the estimator convergence
studies and some theoretical considerations, the total number of random trials M
has been taken as equal to 1,000. The flowchart of the program used for
probabilistic homogenisation is shown in Figure 2.99. As presented, the program
makes it possible to discretise automatically the RVE on the basis of the main cell
geometrical parameters, visualisation of the mesh introduced, random generation
of the input random variables and iterative computations of the homogenisation
functions as well as statistical estimators of either upper and lower bounds or direct
effective characteristics of the elasticity tensor components.

| Automatic-parametric mesh generator |
d

| Input data visualization |
d

1st loop over random spaces
Do for iter=1,M

Generation of e(w), v(a))
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Enddo

Computations of PDFs of elasticity tensor components

Upper and lower bounds: sup(C ,j,”jf ) (co)), inf (C ,(,Zf ) (a)))
2nd loop over random spaces
Do for iter=1,M
Generation of F,  (®)
Enddo
{

3rd loop over random spaces
Do for iter=1,M
Homogenisation plane strain problems

tolio). (o1, (o))

i o)
Enddo
d

4th loop over random spaces
do for iter=1,.M
Computations of statistical estimators

u,lcgl). u,bupley? ), finelcg)
PDF(sup(c?”)), PDF(CS), PDF(inf(c))

Enddo
Figure 2.99. Algorithm for the MCS simulation of homogenisation procedure

Numerical analysis of probabilistic homogenisation of the fibre composite with
stochastic interface defects has been performed using the MCCEFF system
described above. Internal automatic generator for the square RVE with a centrally
located round fibre occupying about 50% of the RVE with interface defects has
been used (the influence of fibre radius variation on the stochastic displacements
and stress fields has been discussed previously). Considering greater composite
sensitivity to the matrix defects (bubbles), only composites having such
discontinuities have been homogenised. The elastic constants for the fibre material

have been taken as follows: E [e] ]=84 GPa, v,=0.22 and the coefficient of Young
modulus variation (e, )=0.1, and for matrix: Ele,|=4 GPa, v,=0.34. Interface

defect parameters have been taken in such a way that the coefficients of variation
of these parameters were equal to 0.1 in all tests: O'(r): 0.1-E[r] and

o(n)=0.1- E[n].
The main aim of the numerical experiments performed was a numerical

verification of the presented mathematical approach to homogenisation of
composites with stochastic interface defects. Considering large number of



Elasticity problems 119

parameters in this approach it was necessary to analyse the probabilistic sensitivity
of the effective elasticity tensor components. It was done with respect to the
expected values of the interface defect number and volume and the coefficient of
matrix Young moduli variation as design parameters. Finally, 132 simulations have
been performed (with 1000 iterations each) with the following remaining input
values: E[r]=R{0.03,0.04,0.05} and E[n] has been assumed as equivalent to the
percentage ratio of the boundary where the defects are located to the total interface
length from 10% to 60% every 5%. The coefficient of matrix Young modulus
variation for tests No 1-4 has been taken as 0.100, 0.075, 0.050, 0.025,
respectively.

Probabilistic moments of the effective elasticity tensor obtained as a result of
the simulations are compared in Figures 2.100-2.119. The expected values of

C!?"(w) are shown in such a way that the test results are presented in increasing

order in the relevant figures. The coefficients of variation of C\)(w) are

neglected in the sensitivity analysis because this random variable is a function of
random fluctuations of the fibre Young modulus. In all the collected figures the
ratio of interface discontinuities (DB) to the entire boundary is marked on the

horizontal axes, while the expected values E[Ci(fzflf)(a))] or the coefficients of

variation a(C;,ﬁ?’ (a))) are displayed on the vertical axes, respectively.

A decrease of the expected values of C f,jf ’(w) with an increase of the interface

defects number is observed with generally small differences in comparison with
the composite with perfect interface. For an increase of the parameter DB from

10% to 60%, the decrease considered is about 10% for E Cl(f’ﬁ)(a))] and
E [Cl(fg) (a))] components, while for E[Cl(;’fz) (a))] it is only 1%. The low sensitivity
of the values for E|Cj;]’ (a))] obtained with respect to the coefficient of the matrix

Young modulus variation seems to be very important, as well. Moreover, it can be
noted that for an increase of the expected values of the interface defects, the values

of E [C l(f{f;)(a))] and E [Cl(fszz) (a))] increase too, and E [C pe (a))] — decreases.
Finally, the increasing DB implies a decrease in the differences of E [C e (a))] and

E[Cl(ff;(a))] obtained for different defects values, while for E[Cf;’fz) (a))] these
differences increase with the increasing total number of the defects.
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Figure 2.100. Expected values E [Cl(fﬁ) (a))] in test 1
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Figure 2.101. Expected values E [Cl(f’ﬁ) (co)] in test 2
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Figure 2.102. Expected values E [C ) (a))] in test 3
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E[Cini(0)]
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Figure 2.103. Expected values E [Cl(fﬁ) (a))] in test 4
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Figure 2.104. Expected values E [Cl(f’;z) (co)] in test 1
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Figure 2.105. Expected values E [C ) (w)] in test 2
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E[Cin(w))

535

5.15 4

505 &

495 4o

DB [%]

10% 15% 2% 5% 0% 5% 0% A5% 0% 5% 60%

Figure 2.106. Expected values E [C s (w)] in test 3
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Figure 2.107. Expected values E [Cl(f’;z) (co)] in test 4
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Figure 2.108. Expected values E [C A ((o)] in test 1
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Figure 2.109. Expected values E [Cf;ﬁ) (a))] in test 2
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Figure 2.110. Expected values E [Cl(fﬁ) (a))] in test 3
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Figure 2.111. Expected values E [C wn (a))] in test 4
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Figure 2.112. Coefficients of variation a(C ) (a))) in test 1
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Figure 2.113. Coefficients of variation a(C,‘fﬁ) (a))) in test 2
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Figure 2.114. Coefficients of variation a(C an (a))) in test 3
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Figure 2.115. Coefficients of variation a(C ) (a))) in test 4
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Figure 2.116. Coefficients of variation Oc(C,(f’Q (a))) in test 1
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Figure 2.117. Coefficients of variation a(C a (a))) in test 2
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Figure 2.118. Coefficients of variation a(C a (a))) in test 3
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Figure 2.119. Coefficients of variation a(Cfff;) (a))) in test 4

Analysing the coefficients of variation Oc(Cl;.sz >(a))), a nonlinear increase of

these coefficients with a DB increase can be observed in all tests. This dependence
has a character similar to the behaviour of the coefficient of variation of the Young
modulus obtained during the interphase probabilistic averaging. Moreover, all
results are in the range of [0.00,0.12] for all the numerical tests, being negligibly
greater than the maximum value of the input parameter (x(ez). Furthermore, the
correlation of interface defect value increases and an a(C,:(ji,ff )(w)) increase is
observed, and in opposition to the expected values, the coefficients of the
C 5;7 )(w) tensor variation are sensitive to a(ez) changes. Together with the

decreasing coefficients of the matrix Young modulus variation the following
changes are observed:

— decrease of a(Cl(f’ﬁ) (a))) and oc(Cl(f’;;) (w));
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— increase of differences between these coefficients obtained for particular values
of interface defects;

— significantly faster increase of a(C,:(,z,f”(a))) (from 10% in test no 1 to about 30%
in test no 4).
The coefficients Oc(Cffffz) (a))) (not considered in the analysis) show total non-

sensitivity to analysed parameters.

Further, taking into account that all the results obtained from the Monte Carlo
simulations, e.g. the first two probabilistic moments of the effective elasticity
tensor, are only statistical estimators of the real values of these parameters, the
numerical sensitivity of these estimators to the number of iterations should be
analysed. Such an analysis is performed on the periodicity cell taking the total
number of random trials as N=5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000 and
10000, respectively.

Only the probabilistic parameters of C\{?’(w) are shown, because variations of
the other component moments of C,i7’ (@) are quite similar to those presented.
The total numbers of random number sampling are marked on the horizontal axes,
while the analysed values of Cii/’(w) are on the vertical axes. The functions

describing convergence of particular estimators obtained in the numerical
experiments enable us to verify the correctness of the simulations performed and
come up with an optimum number of the samples for estimation of any

probabilistic coefficient and/or moment for the tensor C ljgf (o).

EI(:IIﬂI
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135
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Figure 2.120. Statistical convergence of the expected value E [C,(fﬁ) (a))]
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Figure 2.124. Statistical convergence of coefficient of variation oc(C ) (a)))
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Figure 2.125. Statistical convergence of coefficient of variation a(Cl(fﬁ) (a)))

It is seen from the analysis of the expected values of C,:(,,’;{/ '(w) that the

estimator convergence character is described by a curve of similar shape in all the
tests. This curve gradually increases from a minimum at N=5 to a maximum at
about N=30 to oscillate with asymptotic convergence to the value approximated. It
is important that in practice for N=100 estimator gives quite a good estimation with
satisfactory accuracy. Taking for example N=1000, computational error resulting
from statistical estimation is negligibly small in comparison with the estimated

value.

Convergence of Oc(C,;.iff ) (a))) estimators has quite a different character than for

E [C;fo )(w)] estimators described above. From the maximum obtained for N=5 the

curve describing the estimator as a function of the total number of iterations
decreases between two inflection points for about N=10 and N=30, then for about
N=100 it starts to converge asymptotically to the approximated quantity.
Analogous to the expected values the shape of the analysed curves is quite similar
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each time for different tests and different effective elasticity tensor components.
Finally, a good approximation is obtained for N=100, while for N=1000 the
computational error is negligibly small.

As can be seen in Figures 2.126 and 2.127, the total number of random trials
necessary in the simulation for precise enough determination of the PDF for

C)(w) is even greater than, for example 5,000—10,000.
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Figure 2.126. Statistical convergence of PDF of C ' (w)
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Figure 2.127. Statistical convergence of PDF of C/ (w)

The main idea behind performing further numerical experiments is to compute
the expected values and variances (or the coefficients of variation) of the effective
elasticity tensor components for the RVE of the superconducting coil cable
[199,221]. Next aim is to check the variability of the effective characteristic
probabilistic moments with respect to the moments of the input random variables.
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Probabilistic effective characteristics are compared with the appropriate upper and
lower bounds probabilistic moments for the same composite specimen.

Due to the internal horizontal and vertical symmetry of the RVE, only a simple
quarter of the periodicity cell has been analysed in the homogenisation procedure
for the discretisation of this cell shown before.

Elastic characteristics and their probabilistic moments of the RVE components
in the form of the expected values and the standard deviations of Young moduli
and Poisson ratios as well as of the Kirchhoff moduli are collected in Table 2.14.

Table 2.14. Probabilistic moments of the elastic characteristics of the superconductor

Material Ele] o(e) E[v] o(v) E[G] o(G)
[GPa] |[GPa] [GPa] |[GPa]
Tube 205.0 |8.0 0.265 10.010 |81.0 2.0

Superconductor (test 1) | 130.0 0.0 0.340 ]0.000 |70.0 0.0
Superconductor (test 2) | 46.8 0.0 0.122 ]0.000 [25.2 0.0
Jacket 126.0 |[12.0 0.311 ]0.012 |48.0 6.0
Insulation 36.0 0.0 0.210 |0.000 |11.0 0.0

Three groups of computational experiments have been performed. It is assumed
that all elastic characteristics are equal to those specified in Table 2.14 in the first
and second groups of computations (tests 1 and 2), while the elastic parameters of
the superconducting strands are omitted in the last test. The strand volume fraction
in the plane considered is assumed in test 1 as equal to 100%, while in the test 2 it
is assumed equal to 36% (approximately the real value). The elastic characteristics
of the strands for the second case are calculated using of spatial averaging only.
These characteristics can be derived by some homogenisation approach (Mori—
Tanaka or self—consistent, for instance) if only the longitudinal elastic modulae are
measured statistically.

The results of numerical analyses are presented in Tables 2.15—-2.20. Upper and
lower bounds as well as the effective elastic properties for test 1 are collected in
Tables 2.15 and 2.16, respectively, for test 2 they are outlined in Tables 2.17 and
2.18, while for test 3 they are outlined in Tables 2.19-2.20. Deterministic values of
the effective elasticity tensor and their up to fourth order probabilistic
characteristics (expected values, coefficients of variation, asymmetry and
concentration) are shown for all these tests.

Table 2.15. Effective elasticity tensor components [GPa] in test 1

Effective (eff) (eff) (eff)
characteristics Ciny Cian Ciiz
Deterministic values | 154.94 68.85 43.67
E[C] 154.27 68.52 43.94
a(C) 5.56e-2 5.44e-2 5.76e-2
B(O) -2.06e-1 2.41e-1 9.98¢e-2
Y(O) 3.27 3.29 3.15
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Table 2.16. Upper and lower bounds for effective elasticity tensor [GPa] in test 1

Effective (eff) (eff) (eff)
characteristics Ciii Cuarz Ciiz

Upper and lower bounds presented

sup(C) inf(C) sup(C) inf(C) Sup(C) inf(C)

Deterministic values | 163.49 146.47 75.56 63.27 43.97 41.60
E[C] 163.60 146.18 75.81 63.16 43.89 41.51
a(C) 6.89¢-2 |5.76e-2 [9.78e-2 |8.14e-2 |4.42e-2 |3.95e-2
B(O) 1.79e-7 | -1.04e-7 |[3.32e-7 |-1.12e-8 |-1.15e-7 |-2.51e-7
Y(C) 3.09 3.06 3.20 3.02 3.07 3.17
Voigt-Reuss bounds

Deterministic values | 171.49 130.33 80.95 52.63 45.27 38.85
E[C] 171.88 129.97 81.43 52.46 45.23 38.76
a(C) 6.78e-2 | 4.72e-2 [9.29e-2 |6.60e-2 |4.54e-2 |3.45e-2
B(O) 3.23e-7 |-2.51e-7 |5.15e-7 |[-1.75e-7 |-2.30e-8 |-2.50e-7
Y(C) 3.26 3.17 3.54 3.09 3.03 3.30
Table 2.17. Effective elasticity tensor components [GPa] in test 2

Effective (eff) (eff) (eff)
characteristics G Cranz iz

Deterministic values | 102.33 36.47 33.69

E[C] 102.50 36.69 33.49

a(C) 5.83e-2 5.90e-2 6.38e-2

B(C) -1.86e-1 -1.92e-1 -9.96e-2

Y(C) 3.23 3.25 3.15
Table 2.18. Upper and lower bounds for effective elasticity tensor [GPa] in test 2
Effective (eff) (ef) (eff)
characteristics Cin Cuanz Ciiz

Upper and lower bounds presented

sup(C) | inf(C) sup(C) | inf(C) sup(C) | inf(C)

Deterministic values | 100.24 82.24 35.21 22.74 32.52 29.75
E[C] 100.37 82.05 35.45 22.68 32.46 29.69
a(C) 8.18e-2 |4.11e-2 |[1.40e-1 |5.84e-2 |[4.99e¢-2 |3.46e-2
B(C) 2.12e-7 |-2.38e-7 |4.16e-7 |-1.58e-7 [-9.73e-8 |-2.89e-7
Y(C) 3.16 3.15 3.38 3.08 3.06 3.21
Voigt-Reuss bounds

Deterministic values | 113.11 71.80 43.86 16.64 34.63 27.58
E[C] 113.50 71.65 44.34 16.61 34.58 27.52
a(C) 1.03e-2 |2.48e-2 |1.7le-1 [2.57e-2 |5.94e-2 |2.46e-2
B(C) 3.23e-7 |-4.13e-7 |[5.15e-7 |-4.02e-7 |-2.30e-8 |-4.17e-7
Y(C) 3.26 3.40 3.54 3.38 3.03 341
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Table 2.19. Effective elasticity tensor components [GPa] in test 3

Effective (eff) (eff) (eff)
Characteristics Ciii Ciznz Ciiz
Deterministic values | 75.07 30.15 25.89
E[C] 75.09 30.29 25.38
a(C) 9.29¢-2 1.06e-1 6.94¢-2
B(C) -1.14e-1 -6.40e-2 -9.97e-2
Y(C) 3.16 3.15 3.17
Tab. 2.20. Upper and lower bounds for effective elasticity tensor [GPa] in test 3

Effective (eff) (eff) (eff)
characteristics Ciin Ciai Ciiz
Upper and lower bounds presented

sup(C) inf(C) sup(C) inf(C) sup(C) inf(C)
Deterministic values | 73.50 4.02 30.47 4.64e-2 | 21.51 1.984
E[C] 73.34 4.02 30.37 4.64e-2  |21.49 1.98
a(C) 1.03e-1 | 2.34e-3 1.57e-1 |3.34e-2 |6.56e-3 |2.75e-3
B(O) 2.42e-7 |-5.64e-7 |[4.30e-7 |5.57e-7 |-7.35e-8 |-5.67e-7
Y(O) 3.182 3.730 3.398 3.704 3.049 3.729
Voigt-Reuss bounds
Deterministic values | 94.84 2.55 41.27 1.23e-2 | 26.79 1.27
E[C] 95.23 2.55 41.74 1.23e-2 |[26.74 1.27
a(C) 1.22e-1 | 9.72e4 | 1.81e-1 3.55e-2 | 7.67e2 |[1.15e-3
B(C) 3.23e-7 |-5.80e-7 |5.15e-7 |5.79e-7 |-2.30e-8 [-5.89e-7
Y(C) 3.26 3.77 3.54 3.76 3.03 3.77

First a general observation, which agrees with engineering intuition, is that the
deterministic quantities and expected values for upper and lower bounds and
effective elasticity tensor components are greater for test 1 (composite including
superconductor) than for test 2 (the cell without superconducting strands). Further,
it is seen that the results of deterministic analyses approximate very well the
expected values obtained in probabilistic simulations and that deterministic results
are generally lower than the approximated expectations.

Analysing the coefficients of variation of all variables computed it is
characteristic that the results of test 1 are significantly smaller than the input
coefficients and the coefficients resulting from test 2. It is caused mainly by the
fact that some of the input elastic characteristics including superconductor have the
coefficients of variation equal to 0. Considering that the superconductor occupies a
significant part of the periodicity cell, the coefficients o resulting from test 2 are in
the range of those characterising the elastic properties of composite components. It
should be outlined at the moment that probabilistic moments of effective
characteristics of order higher than the second are in general in the range of the
corresponding characteristics of the input elastic parameters in the probabilistic
homogenisation of elastostatic problems.

Observing characteristics of the third and fourth order it may be concluded that
the upper and lower bounds of the effective tensor in both tests have symmetric
probability density functions, while the effective characteristics PDFs show some



134 Computational Mechanics of Composite Materials

asymmetry. Finally, it can be observed that the coefficients of concentration are
approximately equal to the value corresponding to the Gaussian variable
probability distribution function.

Considering these observations we can treat the probability density functions of
the effective elastic characteristics as Gaussian, which enables us to characterise
uniquely these distributions using only their first two probabilistic moments. This
conclusion is very important in the context of the SFEM implementation of the
problem where only the first two moments of the state functions can be computed
and, furthermore, all odd moments are equal to 0.

2.3.2.2.3 Stochastic Perturbation Approach to the

Homogenisation

The homogenisation technique presented in the preceding sections is combined
now with the stochastic second order perturbation second central probabilistic
moment method. To rewrite the stochastic version of the variational formulation of
the homogenisation problem, the interface forces equivalent to the stress interface
conditions should be stochastically perturbed first. It is known from the classical
theory of homogenisation that in case of ideal bonds between the fibre and matrix,
the interface load components are obtained in the form of the following difference,
cf. (2.155)

F —F®» _g® (2.176)

(pg)i (p)i (pq)i

Taking into account the general Taylor series expansion it is found that

F(pq)i = (F(pq)i)o +9(F<pq)i)’rAbr + %GZ(F(M)I' )Js Ab"Ab° (2.177)

Rewriting the forces F”

(pa)i for =0,1,2, comparing the respective terms of zeroth,

first and second order, it is obtained after some additional algebra that

(Fp)° = (Fé,fq)),-)o - (Fg;;)i)o (2.178)
(Fop) = (E 2 )" = (F0,) (2.179)
(Fip )™ = (f‘}(pzq)ﬁ)ﬁ —(F((,?q)i)’” (2.180)

Thus, the stochastic version of minimum potential energy principle for the
homogenisation problem has the following form:
= asingle zeroth order equation:
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&i,jcgkz(l(pq)k,z)odg =" j&i(ﬁpq)i)od(ﬁ Q) (2.181)

a=12Q 0Q,,

a

= R first order equations:

0 "
z!zzl,Zd'. avi,jcijkl(x(pq)k,lJ dfd (2.182)

0
SRR ES YT &

BQ a=12 0 i,j ikl
a

= asingle second order equation:

( 2 f5vi,jC3k1 (Z(pq)k,/ )’mdQ]COV(br’bs)

-

2

Q
( (60, (F i) ”d(aQ)JCOV(b’ b*) (2.183)

_[2 > o G Ukz(l(pq)kz) aQ+ 3y j5v,] ykl (pq)k,l)OdQ

a:l,ZQi[ a=12qQ,
b

If the Young moduli of fibre and matrix are the components of the input random
variable vector then there holds

J (Cg/k/ (e(x; ) X))

de

a

Sy ALY, fora=12 2.184)

where ;Zz) is the tensor given by (2.14) and calculated for the elastic

characteristics of the respective material indexed by a, whereas y'“ is the

characteristic function. Thus, the first order derivatives of the elasticity tensor with
respect to the input random variable vector are obtained as

de ijkl ikl
a

a(cijkl (e(x(o)x)) :{‘P(”A(” \{,(Z)A(z)} (2.185)

Hence, the second order derivatives have the form



136  Computational Mechanics of Composite Materials

82(C"f“(e(X;w)gx)) (a)8 EZI)(X) =0, fora=1,2 (2180
de’ e,

a

while mixed second order derivatives can be written as

9*(Cyule(x; 0} ) _y0? ) _ o i (2.187)
de,de, de, de,

Considering the above, all components of the second order derivatives of the
stiffness matrixes K &g‘” in this problem are equal to 0. Moreover, since the

assumption of the uncorrelation of input random variables

Vare, 0 (2.188)
Cov(el @ ) - 0 Vare
2

thus, the first and second partial derivatives of the vectors F, @

(pgi With respect to the

random variables vector are calculated as

IFY. 9cw

a”’q” = tn =AY n, xedQ,, a=12 (2.189)
ea etl
and
IF. drcl 9 Al
PO o = W0y = =Wy 20, x€d Q,, a=12 (2.190)

86‘1 86,1 ! aea

After all these simplifications, the set of equations (2.181) — (2.183) can be written
in the following form:
e asingle zeroth order equation:

2z j5v:/ ukl(l(pq)kl) dQ=— ISV( (pq)t) d(0Q) (2.191)

a=12Q, Q,,

e R first order equations:

&, .CY TdQ=— [év|A, . |n.d(oQ
gmj . Cl ) ag{zv'[ o (30D (2.192)

- .[5":1 ik (?C(pq)kl)odg

alQ

e asingle second order equation:
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2 ,[(Svi,jcz_'(;kl (Z(pq)k,l }2) dQ

a=1,2 Q,
’ b 2.193
:—a§2d[5Vi,jC£j;d(Z(pq)k,1)“ dQ Cov(b b ) ( )
where
(Z<pq>k,1)(2) =_%(Z(pq)k,l)JSCOV(br,bS) o

It should be noted that (2.191) — (2.194) give the set of fundamental variational
equations of the homogenisation problem due to the second order stochastic
perturbation method. Next, these equations will be discretised by the use of
classical finite element technique and, as a result, the zeroth, first and second order
algebraic equations are derived. Further, let us introduce the following
discretisation of the homogenisation function and its derivatives with respect to the
random variables using the classical shape functions ¢,,(X):

(Z<pv)i(X))O = Qi (X)- (q(pv)a)o, xeQ, py=1.2 (2.195)
(X(pv)i(X))’r =<Pia(x)-(q(pv)a)”, xeQ, py=1,2 (2.196)
(i)™ =010 (). x€ Q. pov=12 (2.197)

where i=12; r,s=1..,R; a=1,...,N (N is the total number of degrees of
freedom employed in the region ). In an analogous way, the approximation of
the strain tensor components is introduced as

83’ <Z(pv) (X)): Bjjo, (X) (q(pv)a)o , XeQ (2.198)
Sfjr (X(pv) (X)): Bijtx (x) (Q(pv)a)’r , XeQ (2.199)
gl?jm (X(pv) (X))= Bija (X) (Q(pv)a)’rs » X€ Q (2'200)

where B, (x) is the typical FEM shape functions derivatives
Bjo (%) = 3101, j(X) + 0o, (0], x€ Q (2.201)

Introducing equations stated above to the zeroth, first and second order
statements of the homogenisation problem represented by (2.191) — (2.194), the
stochastic formulation of the problem can be discretised through the following set
of algebraic linear (in fact deterministic) equations:
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Koq(opt) = Q(Op‘) (2202)
r 0
q( pv) Q([n ) (pv) (2203)
KOq((IZ)z) =-K Q(p\)COV(br b*) (2.204)
where
a6 =105, Cov(b",b*) (2.205)

and K, qpvy, Qv denote the global stiffness matrix, generalised coordinates
vectors of the homogenisation functions and external load vectors,
correspondingly. Considering the plane strain nature of the homogenisation
problem, the global stiffness matrix and its partial derivatives with respect to the
random variables of the problem can be rewritten as follows:

E
c’
62:;(! ijkl IJ(X kl[i
‘ (2.206)
1 T 0
E —
2& | 1 0 |B B dQ
= (1+Vv)(1=-2v) s ijo  KIp
e| symm ﬁ
E
c’
OL Z‘;é" ijkl ljot kl[i
‘ (2.207)
(v | T
_y 4V | 1 0 B B dQ
a(1+v)(1-2v) 4 s fjo kB
e| symm 2(‘17:)
zxﬁ - ;JCU;:IBU&BHB(’ZQ (2208)

as far as Young moduli are randomised only. Computing from the above equations
successively the zeroth order displacement vector q( V) from (2.202), first order

displacement vector g, from (2.203) and the second order displacement vector

q((ii) from (2.204) — (2.205), the expected values of the homogenisation function

can be derived as

E[q(pv)]z q(opv) 2 q(m)COV(br bs) (2'209)

Their covariance matrix can be determined in the form
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C0V<‘1<pv>r G prys )= Gip i COV(D" D7) (2210)

where o, B are indexing all the degrees of freedom of the RVE. Then, the expected
values of the stress tensor components can be expressed as

(e)|_ ()0, 0 1 _.rs (e),r ,s (e) roys
E[o,-j J- {CUZI @) T3 90pm) T Cia q(,,v)}Bk, Cov(b",b") (221D
while its covariances — from the following equation:
Covlo®, 64" )= BE'BY) Covid”b*)
@0 ~(f)0_,r s (e)r ~(f)ss 0 0
{Cijkl Cijmn q(pv)q(pv) + Cijkl Cijmn q(pv)q(pv) (2212)
@ r ()0 s 0 @0 ~(f)r 0 s }
+Cijkl Cijmn 4 pvy9pv) +Cijkl Cijmn 9 pv)9(pv)
where i,j,k,l.g,h,p,v=1,2; 1<d, f <E standing for the finite elements numbers in

the cell mesh. In accordance with the probabilistic homogenisation methodology,
the expected values of the elasticity tensor components can be found starting from
(2.136) as

1

E Ci(jlenjz)]: @g{ (E[Ciqu ]+ E[Cijklgkl (Z(pq) )] )dQ (2.213)

The second term in this integral can be extended using second order
perturbation method as follows:

E lszjklgkl (X( pq)) J

+oo
= [(CS +ab"Cy +L A AB'C ) pi(b(x)) db
(2.214)

X +.r((x(pq)k,l )0 +Ab" (X(pq)k,l )’u + %AbuAbv (Z(pq)k,l )’W )pR (b(x)) db

There holds
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oo
E[Czjklgkl (Z(pq> )]= | Cf}kz (Z<pq)k,1 )0 pr(b(x))db

+oo
+ JAB Cy A (Y i s ) P b)) (2215)

e )
+% J.Cl'jklAbMAbl (x(pq)k,l)’w PR (b(x))db
= Ci?kl (Z(pq)k,l )0 + {Cz?j?d (Z(pq)k,l )’S + %C,;(;kl (Z(pq)k,, )’” }Cov(b’ ,bs)

Averaging both sides of this equation over the region Q and including in the
relation (2.213) together with spatially averaged expected values of the original
elasticity tensor, the expected values of the homogenised elasticity tensor are
obtained. Next, the covariances of the effective elasticity tensor components can be
derived similarly as

Wralt —
COV(CiE'iJIy) ’ Cnfg); )_ Cov(cijkl ’ Cmnpq )+ Cov(cijkl ’ Cmnuv%(pq)u,v )

( ) ( ) (2.216)
+Cov Cijrsx(kl)r,s ’ Cmnpq +Cov Cijrsx(kl)r,s ’ Cmnuvl(pq)u,v

Finally, the covariances of the effective elasticity tensor components are calculated
below. Covariance of the first component in (2.216) is derived as

+oo

COV(Cijkl > Cmnpq): ,[ (Cijkl - E[Cijkl ] )(Cmnpq - E[Cmnpq] )pR (b(x)) db

—oo

+oo
= (C0y + b, €y = o )+ Ab,Cig = Coop I (b)) 2.217)

—oo

mnpgq mnpq

+oo
= Gty Citpa [ Ab,Ab, pi (b(0))db = €1y Ct Corl” )

Next, the cross—covariances of the second component are calculated and there
holds

+oo

COV(Cijer(kz)z,w; Conn X (pgyu,v )= I(CHMX(kI)t,w - E[Czjrwl(kl)z,w] ) (2.218)

—oo

X (Cmnqu(pq)u,v - E[Cmnuvx(pq)u,v] )pR (b(x)) db

which, by introducing the simplifying notation, becomes
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+oo
J(C0% + €7 b, 1" + Oy b, +C” b, b, + CO ™ Ab, A,
e+ 1€ )l b e bo) ab

v (2.219)
x [[D°9° + D Abp® + D p* Ab, + D“Ab,gAb, + 1D Ab,Ab,

—oco

(D%’ + (D9 + D% )Covlp® b7 )} o (b)) db

Further, it is obtained that

+oo
[(CO%° +C7Ab, 1° + COx b, +C7Ab, 1" A, +-C " Ab,Ab,

f{c“ 20+ 0 +1C0 covlp” b )} o (b)) b

X T (Do(po +D“Ab,@° + D’ Ab, + D“Ab, @ Ab, +1 D0/ Ab A,
e (2.220)
—{D%° + D9 + 1D lov(p®,b° )} Jpe (b)) ab

+o0 +oo
= [C7Ab, XD Ab,¢° pr (b(x))db+ [CAb,x D@ °Ab, pp(b(x))db

—oo —oo

+oo +oo
+ [COx"Ab,D*Ab,9  prb(x))db+ [COxAb D@ “Ab, g (b(x))db

—oco —oo

Integration over the probability domain gives

+oo +oo
JCTAb, x "D Ab,¢° pr (b(x))db+ [CAb, x°D 9 Ab, pr (b(x))db

—oco —oo

+oo +o0
+ [COx"Ab,D“Ab,¢° pp(b(x)) b+ [C°x"Ab,D 9 Ab, pr (b(x))db (2221)

—oco —oco

= {C”D’S 2°0° +C" "D +C D" + CO)(”DOgo’S}Cov(br,bs)

or, in a more explicit way, that
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COV( Uer(kl)t w 5 Cmnuvl(pq)u v)

{ lij mnuv (Z(kl)t w) (Z(pq)u v) + Cl]twcmnuv (Z(kl)t,w)o(x(pq)u,v)ys
+ Cl?tw mnuv (x(kl)r,w) (Z(pq)u,v ) + Cl?tw mnuy (Z(k])t,w)’r (Z(pq)u,v )’S }

X Cov( ".b* )
Now, the third component is transformed as follows:

Cov(ciikl ; Cmnuv%(pq)u,v )= COV(C; DX)

= Jle? + €7 ab, ) pplbo) db

+oo
x [[D0y° +D"Ab, x° + DOy < Ab, + D Ab, y“Ab, +L D" b Ab,

—o0

{02+ g+ 100 )Corfp, b ) oy b)) ab

+oo +oo
= [C"Ab,D“Ab,x pr(b(x))db+ [C7Ab,D’y“Ab, p(b(x))db

) —oo

{cp g+ feorl’ b

(2.222)

(2.223)

Introducing the symbolic summation notation for the tensor function considered

above it can be written that
COV(CiikI > Cmnuv%(pq)u,v )
= Cov(C:Dy)={C'D* 4 + "Dy feovlp” 1)
{Cz]kl Ctrinuv (Z(pq)u,v ) + Cljk] C:?muv (x(pq)u,v ) * }Cov(br ’ bS )

By the analogous way, it is obtained
COV( ijrw%(kl)t w;Cmnpq)
= Cov(Cy:D)={C" 4D + %D fcovlp” . b*)
= { ijrw (Z(kl)z,w) ;l1npq + C;j;\v (X(kl)r,w)’s Cmnpq }Cov(b’ b* )

(2.224)

(2.225)

The components of effective elasticity tensor covariances are found. Starting from

the classical definition
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Cov(Ci(l.zflf) . )

mnpq

= COV(Cijkl + Cijtw%(kl)f,w ; Cmnpq + Cmnuv%( pq)u,v)
o (2.226)
= j(cykl + Ciin X (ktyew — E[Cijkl ]_ E[Cijzwl(km,w])

X (Cmnpq + Cmnuvx(pq)u,v - E[Cmnpq ]_ E[Cmnuvl(pq)u, v ])pR (b()()) db

Transforming the respective integrands and using Fubini theorem applied to the
integrals of random functions we obtain further

+oo
.[ (Cijkl -E [Cl]kl ]XC111npq -E [Cmnpq ])p R (b (X)) db

—oo

too
x J. (Cijkl - E[Cijkl ]Xcmnuvl(pq)u,v - E[Cmnuvl(pq)u,v ])pR (b(x)) db (2.227)

—oo

+oo
x .[ (Cijrwl(kl)z,w - E[Cijtwl(km,w ]Xcmnpq - E[Cmnpq ])PR (b(x)) db

—o0

oo
X ,[ (Cijrw%(kl)t,w - E[th/'twl(kl)t,w ]Xcmnuv)((pq)u,v - E[Cmnuv%(pq)u,v ])pR db

—o0

which, using the classical definition of the covariance, is equal to

COV(Cijkl s Cmnpq )+ Cov(cijkl > Cmnuv%(pq)u,v )+

2.228
+ COV(Cijth(kl)t,w’ Cmnpq )+ COV(Cijth(kl)t,w’ Cmnuv%(pq)u,v) ( )

Introducing all the statements into the last one it can finally be written that

colesscun)
=CitConmpg + Ciiw (Z(kz)t,w )0 Coonpg + Ciinw (Z(kz)z,w )’S Cf?mpq
+ C;j};cl C;rlslluv (Z(M)u,v )O + Czjj;lcr?muv (Z(pq)u,v ) * (2_229)
+ Ciny Coumu (Z(kl)z,w )O (Z( pa)u,v ) O+ Ci}';vvCZnuv (Z(Id)r,w )0 (Z(pqm,v )'S
+ CinComan Cern)” (Zw)u,v )"+ anvC3nL,v(Z<kz>z,w)’r (Z<pq>u,v )A}
x Cov (br b’ )
It should be underlined here that the above equations give complete a description

of the effective elasticity tensor components in the stochastic second moment and
second order perturbation approach. Finally, let us note that many simplifications
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resulted here thanks to the assumption that the input random variables of the
homogenisation problem are just the Young moduli of the fibre and matrix. If the
Poisson ratios are treated as random, the second order derivatives of the
constitutive tensor would generally differ from O and the stochastic finite element
formulation of the homogenisation procedure would be essentially more
complicated.

For the periodicity cell and its discretisation shown in Figure 2.128 elastic
properties of the glass fibre and the matrix are adopted as follows: the Young
moduli expected values E[e;] = 84 GPa, E[e,] = 4.0 GPa, while the deterministic
Poisson ratios are taken as equal to v; = 0.22 in fibre and v, = 0.34 — in the matrix.

Figure 2.128. Periodicity cell tested

Five different sets of Young moduli coefficients of variation are analysed
according to Table 2.21 — various values between 0.05 and 0.15 have been adopted
to verify the influence of the component data randomness on the respective
probabilistic moments of the homogenised elasticity tensor. The finite difference
numerical technique has been employed to determine the relevant derivatives with
respect to the input random variables adopted.

Table 2.21. The coefficient of variation of the input random variables

Test number a(el) 06(62)
1 0.050 0.050
2 0.075 0.075
3 0.100 0.100
4 0.125 0.125
5 0.150 0.150

The cross-sectional fibre area equals to about a half of the total periodicity cell
area. The results in the form of expected values and coefficients of variation of the
homogenised tensor components obtained from four computational tests are shown
in Table 2.22 and compared against the corresponding values obtained by using the
MCS technique for the total number of random trials taken as 10°.

Table 2.22. Coefficients of variation for the effective elasticity tensor
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Test olciif) @) olCit) @)
SFEM MCS SFEM MCS
1 0.0410 0.0516 0.7152 0.0517
2 0.0622 0.0777 0.1073 0.0777
3 0.0830 0.1037 0.1430 0.1037
4 0.1036 0.1297 0.1788 0.1297
5 0.1244 0.1557 0.2146 0.1557

It is seen that the results of the SFEM—based computations are slightly smaller
than those resulting from the Monte Carlo simulations in the case of a(Cl(f{fl)(w));

the opposite trend is observed for a(Cfng (a))). The differences between both

models are acceptable for very small input coefficients of variation and above the
value 0.1 (second order approach limitation) they enormously increase. It is also
observed that the coefficients from the MCS analysis are equal with each other,
while the SFEM returns different values for both effective tensor components. It
follows the fact that the first partial derivatives of both components with respect to
Young moduli of the fibre and matrix are different. These derivatives are included
in the SFEM equations for the second order moments and, in the same time, they
do not influence the MCS homogenisation model at all. Furthermore, a linear
dependence between the results obtained and the input coefficients of variation of
the components Young moduli is observed.

The main reason for numerical implementation of the SFEM equations for
modelling of the homogenisation problem is a decisive decrease in computation
time in comparison to that necessary by the MCS technique. It should be
mentioned that the Monte Carlo sampling time can be approximated as a product
of the following times:

(a) asingle deterministic cell problem solution,

(b) the total number of homogenisation functions required (three functions

X1 X2y and Y22 in this plane strain analysis),

(c) the total number of random trials performed.

There are some time consuming procedures in the MCS programs such as
random numbers generation, post—processing estimation procedure and the
subroutines for averaging the needed parameters within the RVE, which are not
included, however their times are negligible in comparison with the routines
pointed out before.

On the other hand, the time for Stochastic Finite Element Analysis can be
approximated by multiplication of the following procedure times: (a) the SFE
solution of the cell problem (with the same order of the cost considered as the
deterministic analysis) and the total number of necessary homogenisation
functions. Taking into account the remarks posed above, the difference in
computational time between MCS and SFEM approaches to the homogenisation
problem is of the order of about (n-1)T provided that # is the total number of MCS
samples and 7 stands for the time of a deterministic problem solution. Observing
this and considering negligible differences between the results of both these
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methods for smaller random dispersion of input variables, the stochastic second
order and second moment computational analysis of composite materials should be
preferred in most engineering problems. The only disadvantage is the complexity
of the equations, which have to be implemented in the respective program as well
as the bounds dealing with randomness of input variables (the coefficients of
variation should be generally smaller than about 0.15).

2.3.4 Upper and Lower Bounds for Effective

Characteristics

Let us consider the coefficients of the following linear second order elliptic
problem [65]:

—div(Cfsu®))=f; xeQ (2.230)
g; ) =1 +uf); xeQ (2.231)
C =y (x) CEP (2.232)

with boundary conditions
u=0; xeodQ (2.233)

In the above equations u®, g(u®) and f denote the displacement field, strain tensor
and vector of external loadings, respectively. As was presented in Sec. 2.3.3.2, the
effective (homogenised) tensor C° is such a tensor that replacing C* and C° in
the above system gives u’ as a solution, which is a weak limit of u® with scale
parameter tends to 0. It should be mentioned that without any other assumptions on
Q microgeometry the bounded set of effective properties is generated. Moreover, it
can be proved that there exist such tensors inf(Cy,) and sup(Cy,) that

inf(Cyy ) < Cjy < sup(Cyy) (2.234)

It is well known that the theorem of minimum potential energy gives the upper
bounds of the effective tensor, whereas the minimum complementary energy
approximates the lower bounds. Thanks to the Eshelby formula the explicit
equations are as follows:
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N -1
supK = [ZCV(KL, +Kr)_'] —K,
r=l1

4 (2.235)
N -1
Supu:[zcl‘(ull+ur) ] _‘LLM
r=1
where x,, u, have the following form:
KM =%:umax
—1
n, =3 L, 10 (2.236)
umax 9Kmax +8‘lei\X
Further, lower bounds for the elasticity tensor are obtained as
N -1
inf k = [ZC,(KZ + K'r)_l:I -k,
’;1 . (2.237)
inf = [ZC,(/LI +u,)"] -1
r=lI
where it holds that
Kl = %»umin 2 328
w0 ) (2.328)
: ? /'Lmin 9Kmin +81umin

and n is a total number of composite constituents where c,,1<r<n denote their
volume fractions. It should be noted that

K= ﬁ (2.239)
e
YR, (2.240)
A=k-2p (2.241)
Cpy = 8,8,A+ (8,8, +8,8 ) (2.242)

From the engineering point of view the most interesting is the effectiveness of
such a characterisation of Cy, , which can be approximated as the difference

between upper and lower estimates and, on the other hand, sensitivity of the
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effective tensor with respect to material characteristics of the constituents. The
Monte Carlo simulation technique has been used to compute probabilistic moments
of the effective elasticity tensor components for the periodic superconductor
analysed before. The superconducting cable consists of fibres made of a
superconductor placed around a thin—walled pipe (tube) covered with a jacket and
insulating material. Experimental data describing elastic characteristics of the
composite constituents are collected in Table 2.23.

Table 2.23. Probabilistic elastic characteristics of the superconductor components

Material Ele] o(e) E[v] o(Vv)
316LLN 205 GPa 8 GPa 0.265 0.010
Incoloy 908
‘annealed’ 182 GPa - 0.303 -
‘cold worked’ 184 GPa - 0.299 -
Titanium 126 GPa 12 GPa 0.311 0.012
Insulation
G10-CR 36 GPa - 0.21 -

Because of negligible differences in the elastic properties of Incoloy (between
the ‘annealed’ and ‘cold worked’ state) the ‘annealed’ state of the superconductor
is considered further. All the results obtained in the computational experiments
have been collected in Table 2.24 and Figures 2.129-2.137. Because of the fact
that the expected values appeared to be rather insensitive to the total number of
random trials in the Monte Carlo simulations, results of the relevant convergence
tests have been omitted in the tables and presented further in the figures. The
expected values considered have been collected in Table 2.24 for M=10,000
random trials.

Table 2.24. Effective elasticity tensor components and their expected values (in GPa)

Effective Analysis type

property Deterministic probabilistic
type (eff) (eff) (eff) (eff) (eff) (eff)
yp C.l!!! CJKK.I CJK.IK C./.l!! CJKK./ CJK./K

sup-VR | 189.56 [ 81.83 | 53.86 189.94 | 82.30 53.82
Sup 178.44 1 76.07 [ 51.18 178.57 | 76.37 51.10
Inf 156.99 | 62.70 | 47.14 156.68 | 62.61 47.03

Inf-VR | 137.93 [ 51.86 | 43.03 137.54 | 51.71 42.92

Effective properties collected in this chapter (sup, inf in Table 2.24) have been
compared with the Voigt—Reuss ones (sup-VR, inf-VR in Table 2.24). Considering
the results obtained, it should be noted that these first approximators are generally
more restrictive than the Voigt—Reuss ones. Further, it can be observed that
deterministic values are, with acceptable accuracy, equal to the corresponding
expected values. Thus, for relatively small standard deviations of the input elastic
characteristics, the randomness in the effective characteristics can be neglected.
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Finally, it can be noted that more restrictive bounds can be used to determine the
effective elasticity tensor in a more efficient way. Taking as a basis the arithmetic
average of the upper and lower bounds, the difference between these bounds is in

the range of 13% for C'%/) bound component, 19% for C'?) bound component

and 8% for C') bound component.

The following figures contain the results of the convergence analysis of the
coefficient of variation, asymmetry and concentration with respect to increasing
total number of Monte Carlo random trials. All these coefficients are presented for

C'") bounds in Figures 2.129, 2.132 and 2.135, for C'¥) bounds in Figures

2.130, 2.133 and 2.136 and for C'%) in Figures 2.131, 2.134 and 2.137. On the
horizontal axes of these figures the total number of Monte Carlo random trials M is
marked, while the vertical is used for the coefficient of variation.

General observation here is that the C'¥) bounds are the most sensitive with
respect to the randomness of input elastic characteristics. These coefficients for
C'r) bounds appeared to be the greatest and then we obtain the coefficients for

C'") and C'\%) | respectively. Next, it can be mentioned that the estimators of the

coefficients of variation show fast convergence to their limits. Efficient

approximation of final coefficients for various components of the tensor Cl.(jﬁff )
bounds is obtained for M equal to about 2,500 random trials. Generally, it is
observed that the coefficients of variation of effective elasticity tensor fulfil the
inequalities detected in case of the expected values. The greatest coefficients are
obtained for Reuss bounds, next the upper and lower bounds proposed in this

chapter, and the smallest for the Voigt lower bounds.
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Figure 2.129. The coefficients of variation of C xzjfj) bounds
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Figure 2.135. The coefficients of concentration of C ;%) bounds
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Observing the results presented in Figures 2.132 and 2.134 it can be observed

that all coefficients of asymmetry of C ;Zf ) verified tend to 0 with increasing total

number of random trials. Comparing C'¥) and C'¥) against C‘%) bounds it can

be stated that the first two variables have minimum positive asymmetry, while the
last have a negative one. It should be mentioned that for such probabilistic
distributions with non—zero coefficients of asymmetry, the expected value is not
equal to the most probable one.

Moreover, taking into account the convergence of coefficients of asymmetry it
is seen that they are generally more slowly convergent than coefficients of
variation estimators. M larger than 5,000 is required to compute these estimators
with satisfactory accuracy. Analogous to the coefficients of variation, the hierarchy

of the expected values of C/;7’, which has been discussed above, is fulfilled.
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Figures 2.135-2.137 present the coefficients of concentration for different
components of the effective elasticity tensor. The estimator convergence analysis
proves that M equal to almost 10,000 is needed to compute these coefficients
properly. The convergence of these estimators is more complex than the previous
ones, but generally their values are greater than 3, which is characteristic for the

Gaussian variables. Thus it can be stated that the C ;Zf ) probabilistic distributions
obtained are more concentrated around their expected values than the Gaussian
variables, but this difference is no greater than a maximum of 15% for the C'7)

bounds.
Figures 2.138-2.140 illustrate the probability density functions of the upper

and lower bounds for C'), C'¥) and C'¥) components of the effective

elasticity tensor. On the horizontal axes of these figures the values computed for
these components are marked, while on the vertical axes the relevant probability
density function (PDF) is given.

The PDFs for the tensor Cj7’ computed together with the additional

coefficients of asymmetry and concentration 3, Y show that these functions have
distributions quite similar to the bell-shaped Gaussian distribution curve. Thus, in
further analyses proposed in the conclusions, we assume that for the input random
variables being elastic characteristics (Young moduli and Poisson ratios) being
Gaussian uncorrelated random variables, the upper and lower bounds computed
having also a Gaussian distribution, which essentially simplifies further estimation
and related numerical analyses.
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The results of numerical tests performed lead us to the conclusion that the
probabilistic upper and lower bounds of the effective elasticity tensor may be very
efficient in the characterisation of superconducting composites with randomly
defined elastic characteristics because of negligible relative differences between
the upper and lower bounds. Considering the computational time cost they appear
to be much more useful in engineering practice than other FEM—based direct
methods.

Computational experiments carried out prove that the coefficients of variation
of the bounds computed are in the range of the input random variables of the
problem. Considering further analyses of homogenised superconducting coils, this
fact confirms the need for the application of the SFEM in such computations,
which is important for essential time savings in comparison with the simulation
methods.

The probabilistic sensitivity of the effective elastic characteristics with respect
to the probabilistic material parameters should be verified computationally in
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further analyses as an effect of regression test, for instance. Such an analysis
enables us to find out these parameters of composite constituent elastic
characteristics, which are the most influencing for global superconductor
behaviour.

The procedure for effective elastic properties approximation seems to be the
only method, which can be successfully applied to the homogenisation of
stochastic interface defects. Such an approach will make the elastic properties of
the interphases much more sensitive to the presence of structural defects than was
in case of the Probabilistic Averaging Method. Considering this, the bounds
presented should be implemented in numerical analysis of stochastic structural
defects into the artificial composite interphases.

2.3.5 Effective Constitutive Relations for the Steel
Reinforced Concrete Plates

The homogenisation method proposed for composite plates analysis is not
based on any mathematical model. However it seems to be very effective for high
contrast steel-reinforced concrete plates [160]. The next main reason to apply this
model is that the composite plate need not be periodic in the applied approach,
which perfectly reflects the civil engineering needs. To get the effective
characterisation for the elasticity tensor, Eshelby theorem can be used since upper
and lower bounds for this tensor are determined. However it is proved by
comparison with collected experimental results, either lower and upper bounds are
very effective in computational modelling of a real plate. Both of them can be used
to calculate the zeroth, first and second order stiffness matrix and the resulting
probabilistic moments of displacements and stresses for the composite plate during
the SFEM analysis. It decisively simplifies the numerical analysis in comparison to
the traditional FEM modelling of such structures (where reinforcement
discretisation is complicated); more accurate results, especially in terms of thin
periodic plate vibration analysis, are shown in [155]. Finally, it should be
mentioned that the homogenised effective characteristics for composite shells can
be derived analogously, following considerations presented in [227,338].

Numerical test deals with the homogenisation of steel-reinforced concrete
plates characterised by the data collected in Table 2.25; the coefficients of
variation randomized Young moduli are taken as 0.1 as in all previous
experiments. The concrete rectangular plate with horizontal dimensions 0.90 m x
0.90 m and thickness 0.045 m, supported at its corners and loaded by the vertical
concentrated force is examined and Table 2.26 contains the deterministic and
probabilistic homogenisation output. It can be observed that, as in previous
examples, the deterministic and expected values are close to each other,
respectively, and the resulting coefficients of variation are obtained as smaller or
equal to those taken for input random variables.
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Table 2.25. Material data of the composite plate

Material properties Steel Concrete
Young modulus 200.0 GPa 28.6 GPa
Poisson ratio 0.30 0.15
Volume fraction 0.0367 0.9633
Yield stress 345.0 GPa 20.68 GPa

Table 2.26. Effective materials characteristics

Effective elasticity Deterministic Expected value Variation
tensor components
[inf (Cllll )] 42.53 GPa 42.52 GPa 0.0985
Elsup(C,,,, )] 44.84 GPa 44.84 GPa 0.0905
Elinf(C,y, )] 13.13 GPa 13.12 GPa 0.0982
Elsup(C,,, )] 13.88 GPa 13.88 GPa 0.0896
Elinf(C,,,, )] 16.27 GPa 16.28 GPa 0.0991
Elsup(C,,», )] 17.09 GPa 17.09 GPa 0.0896

The most important observation is that the lower and upper bounds are almost
equal for any of the effective elasticity tensor components. Thus it does not matter
which of them are used in the approximation of the real composite structure.
Hence, the very complicated discretisation process of this particular concrete
structure type (ABAQUS) can be replaced with an analysis of the homogeneous
plate with elasticity tensor components calculated as proposed above. After
successful verification of other reinforced concrete plates with various
combinations of input parameters, such formulas for the effective elasticity tensor
could be incorporated in the finite element stiffness formation process to speed up
the FEM modelling procedures for these structures.

The variability analysis for expected values and the coefficients of variation of
the effective elasticity tensor is presented in Figures 2.141 and 2.142 as a function
of Young moduli expectations of the steel and concrete. It is seen that the Young
modulus of the concrete matrix is detected as a crucial parameter for both
probabilistic moments. It is due to the fact that the matrix is the dominating
component (in the volumetric context) while the equations for homogenised tensor
are rewritten as functions of the volume ratios of the composite components.

Considering the above, the behaviour of a real composite is compared against
the homogenised one, cf. Figure 2.143. It is seen that the central deflection
increments for both models are almost equal in the elastic range and, further, some
expressions for the nonlinear range should be proposed and verified.
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Figure 2.141. Expected value of upper bound for the component C);y;
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Figure 2.142. Coefficient of variation of upper bound for the component Cy;y;

A very broad discussion on theoretical and numerical modelling concepts in
reinforced concrete structures have been presented in [22] — fracture analysis
contained in this study can be incorporated into the SFEM using the approach
described in [33]. Future analyses devoted to the application of homogenisation
technique in reinforced plates modelling should focus on incorporation of the
microcracks appearing in real matrices. It can be done using initial homogenisation
of the cracks into the matrix [92,266,321] to find equivalent homogeneous
medium; further homogenisation follows the above considerations.

Taking into account all the results of this test as well as the previous analyses
on the homogeneous plates with random parameters, the application of the
Stochastic Finite Element Method for the homogenised plate should approximate
the probabilistic moments of displacements [63] in linear elastic range for the real
plate very well. The expected values and variances of the effective elasticity tensor
can be obtained for this purpose by using symbolic MAPLE computations
analogous to those presented above.
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Figure 2.143. Vertical displacements of the composite plate centre

2.4 Conclusions

The main advantage of the homogenisation approach proposed is that any
randomness in geometry or elasticity of the composite structures is replaced by a
single effective random variable of the elasticity tensor components characterising
such a structure. Hence, computational studies of engineering composites with
different random variables using a homogeneous one with deterministically
defined geometry and equivalent probability density function of the elastic
properties can be carried out. It is observed that using an analytical expression for
the homogenised elastic properties, the randomness in geometry for the periodicity
cell can be introduced and can result in random fluctuations of the effective
parameters only. Furthermore, even if the composite structure is not periodic, the
results of homogenisation method application are satisfactory, i.e. the probabilistic
response of the structure homogenised approximates very well the real composite
model; analytical solution in the correlative approach for random quasi—periodic
structures can be found in [278].

The basic value of the proposed homogenisation method is that the equations
for the expected values and covariances of effective characteristics do not depend
on the PDF type of the input random fields. However, in case of greater values of
higher order probabilistic moments related to the first two as well as the lack of the
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PDFs symmetry, a higher order version of the perturbation method is
recommended. It is important since the probability density function of the input
may not always be assumed properly, while in most experimental cases it is a
subject of the statistical approximation only. Application of a stochastic higher
order perturbation technique is relatively easy for closed form homogenisation
equations considering the symbolic differentiation approach. It should be
emphasised that, taking into account the capability of MAPLE links with
FORTRAN routines, the program can be used in further SFEM computations as an
intermediate procedure for symbolic homogenisation and sequential order
perturbation derivation.

It should be underlined that the method proposed can find its application in
stochastic reliability studies (SOSM approach) for various composite structures.
This homogenisation technique makes it possible to reduce significantly the total
number of degrees of freedom for such a structure, while the expected values and
covariances of displacements and stresses enable one to estimate the second order
second moment reliability (SORM) index or even third order reliability coefficients
(W-SOTM). In the same time, both probabilistic methodologies have
[171,175,180] and can find further applications in determination of effective heat
conductivity coefficients in various models [216,294] including fibre-reinforced
structures with some interfacial thermal resistance [303].

Due to the satisfactory accuracy of the homogenisation approach in modelling
of composite structures, the model worked out can be treated as the first step for
so—called self-homogenising finite elements, where the computer program
automatically homogenises the entire structure using original material composite
characteristics and finally calculates the displacements and stresses probabilistic
moments for an equivalent homogeneous medium. On the other hand, the
stochastic perturbation homogenisation procedure can be further modified for
elastoplastic composite structures using Transformation Field Analysis (TFA) or
Fast Fourier Transform (FFT) approaches. In the same time, the study of stochastic
elastodynamic effective behaviour is recommended since the still growing range of
composites has possible engineering applications.

2.5 Appendix

We prove, in the context of the composite model introduced in this chapter, that
u(x,y) being a solution of problem (2.121) is constant in the region €. For this
purpose, let us consider u(y) being a Q—periodic displacement function and the
solution of the following boundary value problem:
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—%O‘ij =F,-(yl xe Q

J
0; =Ciu (Y)gkl (“)’ xe QUQ, (A2.1)

|GN| = g(y), xel,r=1,...m

where g(y) are given functions defined on Q or I, 7=1,...,m with m being the total
number of various interface boundaries. The variational formulation of (A2.1) may
be stated as follows:

M=

(A2.2)

I

[o,nvdl+3 [ ,,(VdQ = [ fv,dQ
T, Q

a=1 Q,

r

for ve V being the following space:

vl el @liblzom =1 mh (A23)

while the corresponding components of the vector v are equal on the two opposite
faces of Q. Taking into account these conditions and neglecting body forces, we
arrive at the well—known relation, cf. (2.121):

a(u,v) = L(v) (A2.4)

If v, =c is taken, which belongs to the set C of vectors constant on €2, there holds
forall ce C

L(c)=0 (A2.5)
Thus, if g(y) from (A2.1) is such that L(c) # 0, there is no solution for the problem

(A2.1). Next, let us introduce the space S=V/C and let us denote by ””k the norm

in [Hl(Qk )]2 and by ”k the norm in L’ (Qk ). Let us observe that

& V is a subspace of V: [H' (Ql )]3 X [H2(§22 )]3 ;
(2)  V isa Hilbert space for the norm

2 2 é
V=l + vl

(A2.6)

(3)  There holds
vl = Sles (v) |i +Z|vi|i (A2.7)
i,j i
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(4)  (A8) may be written equivalently as

, , 1 (A2.8)
{1 + s
(5) It can be proved that S is an Hilbert space for the norm
||V|| = Inf |||V + c||| (A2.9)
ceC
(6)  The norm equivalent to (A2.9) on space S may be rewritten as
(A2.10)

N<V>=(;|g,,<v> |f+z|ez:,<v>|§]z

If we prove the statement (6) thus, due to the fact that N(v) is continuous as well as
coercive on space S and, further, applying the Lax—Millgram theorem we arrive at
the conclusion that there exists a unique solution for (A2.1). To show this fact let
us note that

I = g+l = °0)s gl el (a2
where
”V"2 < NZ(V) (A2.12)
There exists such a constant ¢; that for all ve W that there holds
M <N () (A2.13)
Let us introduce the orthogonal projection operator O such that
0 :(L2 @ ))3 SC (A2.14)
with respect to the scalar product corresponding to || - Ityields
I = M)+, 0w [ (A2.15)
Equation (A2.15) is true if and only if for all ve V' there holds

|v1 - 0v1|f < CINZ(V) (A2.16)

We assume that it is possible to improve v" = (vl”,v;1 )e V' for any positive n such
that
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(A2.17)

=1, N2(v")<

2
|v1" -O0v/ ]

I | =

Setting w" = (vl” -0v!,v, —0v§) we get for all ce C that

(A2.18)

N2<w”)Sl; wl'
n

1=1; (wl",c)=0

Then, {w"} is bounded in V and there exists such a subsequence {w"’ = (w{”,w;" )},

which converges weakly to w, in V. Since that, wlLl converges strongly in
@)y

Wi =1 (A2.19)

Due to the lower semi—continuity there holds

N2 (w°)< 1imN>(w")=0 (A2.20)
Finally, it is obtained that

& (Wlo )= 0; g (Wg)= 0 (A22D)
which gives as the result

w)=w)=ceC (A2.22)





