
2 Elasticity Problems  

Numerical experiments devoted to multi-component and multiscale media 
modelling are still one of the most important part of modern computational 
mechanics and engineering [98,161,272,312]. The main idea of this chapter in this 
context is to present a general approach to numerical analysis of elastostatic 
problems in 1D and 2D heterogeneous media [105,274,300,317] and the 
homogenisation method of periodic linear elastic engineering composite structures 
exhibiting randomness in material parameters [32,83,356,372,375]. As is shown 
below, the effective elasticity tensor components of such structures are obtained as 
the closed-form equations in the deterministic approach, which enables a 
relatively easy extension to the stochastic analysis by the application of the second 
order perturbation second central probabilistic moment analysis. On the other hand, 
the Monte Carlo simulation approach is employed to solve the cell problem. As is 
known from numerous books and articles in this area, the main difficulty in 
homogenisation is the lack of one general model valid for various composite 
structures; different nature homogenised constitutive relations are derived for 
beams, plates, shells etc. and even for the same type of engineering structure 
different effective relations are fulfilled for composites with constituents of 
different types (with ceramic, metal or polymer matrices and so forth). That is why 
numerous theoretical and numerical homogenisation models of composites are 
developed and applied in engineering practice.

All the theories in this field can be arbitrarily divided, considering especially 
the method and form of the final results, into two essentially different groups. The 
first one contains all the methods resulting in closed form equations characterizing 
upper and lower bounds [108,138,156,285,339] or giving direct approximations of 
the effective material tensors [122,123,248]. In alternative, so-called cell problems 
are solved to calculate, on the basis of averaged stresses or strains, the final global 
characteristics of the composite in elastic range [11,214,304,383], for thermoelastic
analysis [117], for composites with elasto-plastic [50,57,58,146,332] or 
visco-elasto-plastic components [366], in the case of fractured or porous 
structures [38,361] or damaged interfaces [224,252,358]. The very recently even 
multiscale methods [236,340] and models have been worked out to include the 
atomistic scale effects in global composite characteristics [67,145]. The results 
obtained for the first models are relatively easy and fast in computation. However, 
usually these approximations are not so precise as the methods based on the cell 
problem solutions. In this context, the decisive role of symbolic computations and 
the relevant computational tools (MAPLE, MATHEMATICA, MATLAB, for 
instance) should be underlined [64,111,268]. By using the MAPLE program and 
any closed form equations for effective characteristics of composites as well as 
thanks to the stochastic second order perturbation technique (in practice of any 
finite order), the probabilistic moments of these characteristics can be derived and 
computed. The great value of such a computational technique lies in its usefulness 
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in stochastic sensitivity studies. The closed form probabilistic moments of the 
homogenised tensor make it possible to derive explicitly the sensitivity gradients 
with respect to the expected values and standard deviations of the original material 
properties of a composite.  

Probabilistic methods in homogenisation [116,120,141,146,259,287,378] obey 
(a) algebraic derivation of the effective properties, (b) Monte-Carlo simulation of 
the effective tensor, (c) Voronoi-tesselations of the RVE together with the relevant 
FEM studies, (d) the moving-window technique. The alternative stochastic second 
order approach to the cell problem solution, where the SFEM analysis should be 
applied to calculate the effective characteristics, is displayed below. Various 
effective elastic characteristics models proposed in the literature are extended 
below using the stochastic perturbation technique and verified numerically with 
respect to probabilistic material parameters of the composite components. The 
entire homogenisation methodology is illustrated with computational examples of 
the two-component heterogeneous bar, fibre-reinforced and layered unidirectional 
composites as well as the heterogeneous plate. Thanks to these experiments, the 
general computational algorithm for stochastic homogenisation is proposed by 
some necessary modifications with comparison to the relevant theoretical 
approach.  

Finally, it is observed that having analytical expressions for the effective 
Young modulus and their probabilistic moments, the model presented can be 
extended to the deterministic and stochastic structural sensitivity analysis for 
elastostatics or elastodynamics of the periodic composite bar structures. It can be 
done assuming ideal bonds between different homogeneous parts of the composites 
or even considering stochastic interface defects between them and introducing the 
interphase model due to the derivations carried out or another related 
microstructural phenomena both in linear an nonlinear range. In the same time, 
starting from the deterministic description of the homogenised structure, the 
effective behaviour related to any external excitations described by the stochastic 
processes can be obtained.  

2.1 Composite Model. Interface Defects Concept  

The main object of the considerations is the random periodic composite 
structure Y with the Representative Volume Element (RVE) denoted by Ω. Let us 
assume that Ω contain perfectly bonded, coherent and disjoint subsets being 
homogeneous (for classical fibre-reinforced composites there are two components, 
for instance) and let us assume that the scale between corresponding geometrical 
diameters of Ω and the whole Y is described by some small parameter ε>0; this 
parameter indexes all the tensors rewritten for the geometrical scale connected with 
Ω. Further, it should be mentioned that random periodic composites are 
considered; it is assumed that for an additional ω belonging to a suitable 
probability space there exists such a homothety that transforms Ω into the entire 
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composite Y. In the random case this homothety is defined for all probabilistic 
moments of input random variables or fields considered. Next, let us introduce two 
different coordinate systems: ( )321 ,, yyy=y  at the microscale of the composite 

and ( )321 ,, xxx=x  at the macroscale. Then, any periodic state function F defined 

on Y can be expressed as  

( ) ( )y
x

x FFF =⎟
⎠
⎞⎜

⎝
⎛=

ε
ε (2.1) 

This definition allows a description of the macro functions (connected with the 
macroscale of a composite) in terms of micro functions and vice versa. Therefore, 
the elasticity coefficients (being homogenised) can be defined as  

( ) ( )yx ijklijkl CC =ε (2.2) 

Random fields under consideration are defined in terms of geometrical as well 
as material properties of the composite. However the periodic microstructure as 
well as its macrogeometry is deterministic. Randomising different composite 
properties, the set of all possible realisations of a particular introduced random 
field have to be admissible from the physical and geometrical point of view, which 
is partially explained by the below relations. Let each subset aΩ  contain linear-

elastic and transversely isotropic materials where Young moduli and Poisson 
coefficients are truncated Gaussian random variables with the first two 
probabilistic moments specified. There holds  
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Moreover, it is assumed that there are no spatial correlations between Young 
moduli and Poisson coefficients and the effect of Gaussian variables cutting-off in 
the context of (2.3) and (2.6) does not influence the relevant probabilistic 
moments. This assumption will be verified computationally in the numerical 
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experiments; a discussion on the cross-property correlations has been done in 
[315]. Further, the random elasticity tensor for each component material can be 
defined as  
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Considering all the assumptions posed above, the random periodicity of Y can 
be understood as the existence of such a translation which, applied to Ω, enables to 
cover the entire Y (as a consequence, the probabilistic moments of e(x;ω) and 
ν(x;ω) are periodic too). Thus, let us adopt Y as a random composite if relevant 
properties of the RVE are Gaussian random variables with specified first two 
probabilistic moments; these variables are bounded to probability spaces 
admissible from mechanical and physical point of view.  

Let us note that the probabilistic description of the elasticity simplifies 
significantly if the Poisson coefficient is assumed to be a deterministic function so 
that  

ax νν =)( , for a=1,2,...,n; ax Ω∈ (2.10) 

Finally, the random elasticity tensor field );( ωxCijkl  is represented as follows:  
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Because of the linear relation between the elasticity tensor components and the 
Young modulus these components have the truncated Gaussian distribution and 
can thus be derived uniquely from their first two moments as   

[ ] [ ]);()();( )( ωω xeExAxCE aaijklijkl ⋅=

for i,j,k,l=1,2, a=1,2,...,n; ax Ω∈ (2.12) 

and 

( ) ( ));()()();( )()( ωω xeVarxAxAxCVar aaijklaijklijkl =

for i,j,k,l=1,2, a=1,2,...,n; ax Ω∈ ,

with no sum over repeating indices  at the right hand side.  

(2.13) 
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There holds  
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General methodology leading to the final results of the effective elasticity 
tensor is to rewrite either strain energy (or complementary energy, for instance) or 
equilibrium equations for a homogeneous medium and the heterogeneous one. 
Next, the effective parameters are derived by equating corresponding expressions 
for the homogeneous and for the real structure. This common methodology is 
applied below, particular mathematical considerations are included in the next 
sections and only the final result useful in further general stochastic analysis is 
shown. The expected values for the effective elasticity tensor in the most general 
case can be obtained by the second order perturbation based extension as [162,208]  
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Using classical probability theory definitions and theorems it is obtained that  

( )∫
+∞

∞−
=1)( dbbpR y , ( )∫

+∞

∞−
=∆ 0)( dbbbpR y

(2.16) 

( ) ( )sr
R

sr bbCovdbbpbb ,)( =∆∆∫
+∞

∞−
y ;   Rs,r ≤≤1

(2.17) 

Therefore  
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Further, the covariance matrix ( ))()( ; eff
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ijkl CCCov  of the effective elasticity 

tensor is calculated using its integral definition  
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whereas inserting the second order perturbation expansion it is found that  
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After all algebraic transformations and neglecting terms of order higher than 
second, there holds  
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Then, starting from two-moment characterization of the effective elasticity tensor 
and the corresponding homogenisation models presented in (2.15) - (2.21), the 
stochastic second order probabilistic moment analysis of a particular engineering 
composites can be carried out. In the general case, these equations lead to a rather 
complicated description of probabilistic moments for the effective elasticity tensor 
particular components.  

In the theory of elasticity the continuum is usually uniquely represented by its 
geometry and elastic properties; most often a character of these features is 
considered as deterministic. It has been numerically proved for the fibre 
composites that the influence of the elastic properties randomness on the 
deterministically represented geometry can be significant. The most general model 
of the linear elastic medium, and intuitively the nearest to the real material, is 
based on the assumption that both its geometry and elasticity are random fields or 
stochastic processes. The phenomenon of random, both interface [5,27,131,200, 
225,242] and volumetric [74,316,342,353,388], non-homogeneities occur mainly 
in the composite materials. While the interface defects (technological inaccuracies, 
matrix cracks, reinforcement breaks or debonding) are important considering the 
fracturing of such composites, the volume heterogeneities generally follow the 
discrete nature of many media. The existing models of stochastic media (based on 
various kinds of geometrical tesselations) do not make it possible to analyse such 
problems and that is why a new formulation is proposed.  

The main idea of the proposed model is a transformation of the stochastic 
medium into some deterministic media with random material parameters, more 
useful in the numerical analysis. Such a transformation is possible provided the 
probabilistic characteristics of geometric dimensions and total number of defects 
occuring at the interfaces are given, assuming that these random fields are 
Gaussian with non-negative or restricted values only. All non-homogeneities 
introduced are divided into two groups: the stochastic interface defects (SID), 
which have non-zero intersections with the interface boundaries, and the 
volumetric stochastic defects (VSD) having no common part with any interface or 
external composite boundary. Further, the interphases are deterministically 
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constructed around all interface boundaries using probabilistic bounds of geometric 
dimensions of the SID considered. Finally, the stochastic geometry is replaced by 
random elastic characteristics of composite constituents thanks to a probabilistic 
modification of the spatial averaging method (PAM). Let us note that the 
formulation proposed for including the SID in the interphase region has its origin 
in micro-mechanical approach to the contact problems rather than in the existing 
interface defects models.  

Having so defined the composite with deterministic geometry and stochastic 
material properties, the stochastic boundary-value problem can be numerically 
solved using either the Monte Carlo simulation method, which is based on 
computational iterations over input random fields, or the SFEM based on second-
order perturbation theory or based on spectral decomposition. The perturbation-
based method has found its application to modeling of fibre-reinforced composites 
and, in view of its computational time savings, should be preferred.  

Finally, let us consider the material discontinuities located randomly on the 
boundaries between composite constituents (interfaces) as it is shown in Figs. 2.1 
and 2.2.  

Ω
a-1

Ω
a

Figure 2.1. Interface defects geometrical sample 

Ω a-1

Ω a

r
b

Bubble

Figure 2.2. A single interface defect geometric idealization 

Numerical model for such nonhomogeneities is based on the assumption that 
[193,194]:  
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(1) there is a finite number of material defects on all composite interfaces; the total 
number of defects considered is assumed as a random parameter (with nonnegative 
values only) defined by its first two probabilistic moments;  
(2) interface defects are approximated by the semi-circles (bubbles) lying with 
their diameters on the interfaces; the radii of the bubbles are assumed to be the next 
random parameter of the problem defined by the expected value and the variance;  
(3) geometric dimensions of every defect belonging to any aΩ  are small in 

comparison with the minimal distance between the )1,2( −−Γ aa  and ),1( aa−Γ
boundaries for a=3,...,n or with 1Ω  geometric dimensions;  

(4) all elastic characteristics specified above are assumed equal to 0 if aDx ∈ , for 

a=1,2,...,n.
It should be underlined that the model introduced approximates the real defects 

rather precisely. In further investigations the semi-circle shape of the defects 
should be replaced with semi-elliptical [353] and their physical model should obey 
nucleation and growth phenomena [345,346] preserving a random character. 
However to build up the numerical procedure, the bubbles should be appropriately 
averaged over the interphases, which they belong to. Probabilistic averaging 
method is proposed in the next section to carry out this smearing.  

Let us consider the stochastic material non-homogeneities contained in some 
Ω⊂Ωa . The set of the defects considered aD  can be divided into three subsets 

aD′ , aD ′′  and aD ′′′ , where aD′  contains all the defects having a non-zero 

intersection with the boundary ),1( aa −Γ , aD ′′  having zero intersection with ),1( aa −Γ
and )1,( +Γ aa , and aD ′′′  having a non-zero intersection with )1,( +Γ aa . Further, all the 

defects belonging to subsets aD′  and 
a

D ′′′  are called the stochastic interface defects 

(SID) and those belonging to aD ′′  the volumetric stochastic defects (VSD). Let us 

consider such aΩ′ , aΩ ′′  and aΩ ′′′ , where aaaa Ω ′′′∪Ω′′∪Ω′=Ω , that with probability 

equal to 1, there holds aaD Ω′⊂′ , aaD Ω′′⊂′′  and aaD Ω ′′′⊂′′′  (cf. Figure 2.3).  

Figure 2.3.  Interphase schematic representation  
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The subsets aaa Ω ′′′Ω ′′Ω′ ,,  can be geometrically constructed using probabilistic 

moments of the defect parameters (their geometric dimensions and total number). 
To provide such a construction let us introduce random fields );( ωxa∆′  and 

);( ωxa∆ ′′′  as upper bounds on the norms of normal vectors defined on the 

boundaries ),1( aa −Γ  and )1,( +Γ aa  and the boundaries of the SID belonging to aD′ ,

and aD ′′′ , respectively. Next, let us consider the upper bounds of probabilistic 

distributions of );( ωxa∆′  and );( ωxa∆ ′′′  given as follows:  

[ ] ( ));(3);( ωω xVarxE aaa ∆′+∆′=∆′ (2.22) 

[ ] ( ));(3);( ωω xVarxE aaa ∆ ′′′+∆ ′′′=∆ ′′′ (2.23) 

Thus, aa Ω ′′′Ω′ ,  can be expressed in the following form:  

{ }aaaaia PdxP ∆′≤ΓΩ∈=Ω′ − ),(:)( ),1( (2.24) 

{ }aaaaia PdxP ∆ ′′′≤ΓΩ∈=Ω ′′′ + ),(:)( )1,( (2.25) 

where i=1,2 and ),( ΓPd  denotes the distance from a point P to the contour Γ . Let 

us note that aΩ ′′  can be obtained as  

aaaa
Ω ′′′∪Ω′−Ω=Ω′′ (2.26) 

Deterministic spatial averaging of properties aY  on continuous and disjoint 

subsets aΩ  of Ω  is employed to formulate the probabilistic averaging method. 

The averaged property )(avY  characterizing the region Ω  is given by the following 
equation [65,129]:  

Ω

Ω
=

∑
=

n

a
aa

av
Y

Y 1)( ; Ω∈x
(2.27) 

where Ω  is the two-dimensional Lesbegue measure of Ω . Deterministic 

averaging can be transformed to the probabilistic case only if Ω  is defined 
deterministically, and aY  and aΩ  are uncorrelated random fields. The expected 

value of probabilistically averaged )()( ωpavY  on Ω  can be derived as  



Elasticity problems     39 
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and, similarly, the variance as  
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Using the above equations Young moduli are probabilistically averaged over all 

aΩ  regions and their aaa Ω ′′′Ω ′′Ω′ ,,  subsets. Finally, a primary stochastic geometry 

of the considered composite is replaced by the new deterministic one. In this way, 
the n-component composite having m interfaces with stochastic interface defects 
on both sides of each interface and with volume non-homogeneities can be 
transformed to a n+m-component structure with deterministic geometry and 
probabilistically defined material parameters. More detailed equations of the PAM 
can be derived for given stochastic parameters of interface defects (if these defects 
can be approximated by specific shapes - circles, hexagons or their halves for 
instance).  

Let us suppose that there is a finite element number of discontinuities in the 
matrix region located on the fibre-matrix interface. These discontinuities are 
approximated by bubbles – semicircles placed with their diameters on the interface, 
see Figure 2.4. The random distribution of the assumed defects is uniquely defined 
by the expected values and variances of the total number and radius of the bubbles; 
it is shown below, there is a sufficient number of parameters to obtain a complete 
characterization of semicircles averaged elastic constants. 

Using (2.28) and (2.29) one can determine the expected value and the variance 
of the effective Young modulus ke , the terms included in the covariance matrix of 

this modulus and also the Poisson ratio. It yields for the expected value  
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Figure 2.4. Bubble interface defects in the fibre-reinforced composite  

Figure 2.5. Interphase for bubble interface defects  

As can be easily seen in the above relation, there holds  
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In a similar way the variance is derived as  
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It can be shown that this equation could have the following form:
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which, neglecting moments of higher than second order, can be reduced to  
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Now the distribution parameters bS  have to be found. As can be seen 

( ) bbb MrS 2
2
1 π= (2.35) 

where bM  is the number of )(ibΩ  regions found in c2Ω  (according to Figures 2.4 

and 2.5) and is equal to  

bb RmM π2= (2.36) 

Therefore, using fundamental properties of random variables it is obtained that  

[ ] [ ]bb mERME ⋅= π2 (2.37) 

and 

[ ] [ ]bb mVarRMVar ⋅= 224π (2.38) 

From the definition of the expected value one derives  
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Finally, the variance of bS  is found as 
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It can be shown that this expression may be transformed into the form: 
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[ ] [ ] [ ]( ) [ ]
[ ] [ ] [ ]( ) [ ] [ ]( )bbbbb

bbbb

rVarrEMVarMErVar

MVarrVarrESVar

+++

+=
22

2

22
4

2
2

2

π

π
(2.41) 

Substituting the equations describing bS  distribution parameters into the relations 

describing the expected value and variance of the ke  modulus, we can similarly 
derive the data necessary for numerical analysis.  

Using analogous equations, the stochastic interface defects in the fibre region 
can be approximated. So, let us assume a finite number of these discontinuities 
inserted into the contact zone. As already established, the fibre material has good 
resistance to degradation (much better than the matrix) and because of this, the 
defects in the 1Ω  region can be approximated as teeth with their sharp sides 
directed towards the fibre centre. A single discontinuity is, from the geometrical 
point of view, the superposition of two circular quadrants with the same radius 
(Figure 2.6). There holds  
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and  
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Figure 2.6. Teeth interface defects in fibre-reinforced composite  
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Figure 2.7. Interphase for teeth interface defects 

The relations describing the discontinuity parameters will have a different form 
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and, finally 
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The Poisson ratio for the fibre interphase region can be obtained in analogous way. 
Finally, the covariance matrix of the Young modulus for this composite takes the 
following form:  
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Zeroing of the corresponding covariance matrix components can be achieved from 
the assumed mutual independence of the Young modulus in the fibre, its contact 
zone and associated regions for the matrix.  

Special purpose numerical procedure has been implemented to check the 
influence of the interface defects parameters on the effective elastic parameters of 
the interphase. The expected values of the interface discontinuities in the matrix 
and fibre contact zone were assumed as 4, 10, 20 and 40 with the width of the 
observed interface varying between 4.0E-3 and 2.0E-2. The results of these 
computations are presented in Figures 2.8 to 2.13: the expected values of the 
homogenised Young modulus functions are given in Figures 2.8 and 2.9, the 
averaged Poisson ratio functions in Figures 2.10 and 2.11 and the variances of the 
Young modulus functions in Figures 2.12 and 2.13. All of these variables are 
marked on the vertical axis and the expected values of the interface defects radius 
are shown in the horizontal ones.  
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Figure 2.11. Probabilistically averaged Poisson ratio in matrix 

As is expected, the resulting expected values of the homogenised Young 
modulus both in the matrix and the fibre regions, and similarly the Poisson ratio, 
are linear functions of the contact zone widths. The variances of the averaged 
Young modulus are second or higher order functions of this variable and this order 
is directly dependent on the number of interface defects.  

Comparing Figures 2.8 with 2.9 and 2.12 with 2.13 it can be seen that the 
Young modulus in the matrix contact zone is, for the present problem, much more 
sensitive to variation of its parameters than the same modulus in the fibre 
interphase. Larger coefficient of variation of this modulus is obtained in the matrix 
interface region rather than in the fibre contact zone. On the other hand, the 
homogenised elastic properties are derived by averaging their values in both 
regions. Thus, greater changes in these properties can be expected in the matrix 
because of the larger volume of bubbles related to the fibre teeth.  

Another interesting effect (cf. Figures 2.12 and 2.13) is the increase of 
variances of the homogenised Young modulus in the matrix contact zone for 
increasing width of this zone and the number of bubbles. The reverse effect occurs 
for the fibre side of the interface and its teeth. This is due to the fact that bubbles 
occupy more than half of a volume of the corresponding contact zone, and teeth 
less than a half.  
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2.2 Elastostatics of Some Composites  

Elastic properties and geometry of Ω  so defined result in the random 
displacement field );( ωxui  and random stress tensor );( ωσ xij  satisfying the 

classical boundary-value problem typical for the linear elastostatics problem. Let 
us assume that there are the stress and displacement boundary conditions, tΩ∂  and 

uΩ∂  respectively, defined on Ω . Let ijklC  be a random function of 1C  class 

defined on the entire Ω  region. Let ρ  denote the mass density of a material 

contained in Ω  and ifρ  denote the vector of body forces per a unit volume. The 

boundary-differential equation system describing this equilibrium problem can be 
written as follows  

);();();( ωεωωσ xxCx klijklij = (2.48) 
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0)();(, =+ ijij fx ωρωσ (2.50) 

[ ] [ ]);(ˆ);( ωω xuExuE ii = ; ux Ω∈∂ (2.51) 

( ) 0);( =ωxuVar i ; ux Ω∈∂ (2.52) 

[ ] [ ]);();( ωωσ xtEnxE ijij = ; tx Ω∈∂ (2.53) 

( ) 0);( =jij nxVar ωσ ; tx Ω∈∂ (2.54) 

for a=1,2,...,n and i,j,k,l=1,2.  
Generally, the equation system posed above is solved using the well-

established numerical methods. However it should first be transformed to the 
variational formulation. Such a formulation, based on the Hamilton principle, is 
presented in the next section. To have the formulation better illustrated, an example 
of the periodic superconducting coil structure is employed. The stochastic non-
homogeneities simulate the technological innacuracies of placing the 
superconducting cable in the RVE. Its periodicity cell in that case is subjected to 
horizontal uniform tension on its vertical boundaries to analyse the influence of the 
stochastic defects on the probabilistic moments of horizontal displacements. The 
stochastic variations of these displacements with respect to the thickness of the 
interphase constructed are verified numerically. Stochastic computational 
experiments are performed using the ABAQUS system and the program POLSAP 
specially adapted for this purpose.  
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2.2.1 Deterministic Computational Analysis  

The main idea of the numerical experiments provided in this section is to 
illustrate the horizontal displacements fields and the shear stresses obtained for the 
deterministic problem of uniform extension of the periodicity cell quarter. Both 
Young modulus and Poisson ratio are assumed here as deterministic functions; for 
the purpose of the tests, the program ABAQUS [1] is used together with its 
graphical postprocessor. The periodicity cell quarter has been discretised by 224 
rectangular 4-node plane strain isoparametric finite elements according to Figure 
2.14. 

Figure 2.14. Discretisation of the fibre-reinforced composite cell quarter 

The symmetry displacement boundary conditions are applied on the horizontal 
edges of the quarter as well as on the left horizontal edge, while the uniform 
extension is applied on the right vertical edge of the RVE. The standard deviations 
of the composite component Young moduli are taken as )( 1eσ = 4.2 GPa, )( 2eσ =

0.4 GPa and the stochastic interface defect data are approximated by the following 
values: [ ]nE =3, ( ) [ ] 15.005.0 == nEnσ , [ ] RrE 02.0= , ( ) 40.81.0 −== ERrσ .

Probabilistically averaged values of the interphase elastic characteristics are 
obtained from these parameters as follows [ ] GPaeE k 82.3= , ( ) GPaeVar k 48.1= ,

324.0=kν  with the interphase thickness equal to 01040.
k
=∆ . Four numerical 

experiments have been carried out for these parameters taking the values collected 
in Table 2.1.  

Table 2.1. Young modulus values of the interphase for particular tests 
Test number 1 2 3 4 

ke 2e [ ]keE [ ] ( )kk eeE σ⋅− 3 [ ] ( )kk eeE σ⋅+ 3
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Horizontal displacement fields and the shear stress fields for particular 
experiments are presented in Figure 2.15 and 2.19 (test no 1), Figure 2.16 and 2.20 
for test no 2, Figure 2.17, 2.21 for test no 3 and Figure 2.18 for test no 4.  

Comparing these results, it is seen that a decrease of the Young modulus value 
lower than its expected value results in a jump of the horizontal displacements field 
within and around the interphase. This effect can be interpreted as the possibility of 
debonding of the composite components caused by the worsening of the interphase 
elastic parameters, which confirms the usefulness of the presented mathematical-
numerical model in the interphase phenomena analysis. It should be underlined that 
in other models of interphase defects and contact effects at the interface, the 
horizontal displacements have discontinuous character too. On the other hand, 
increasing the Young modulus above its expected value does not introduce any 
sensible differences in comparison with the traditional deterministic model for the 
perfect interface.  

Analysing the shear stresses fields ( )ix12σ  collected in Figures 2.19 and 2.21 a 

jump of the respective values of stresses at the boundary between the fibre and the 
interphase region is observed in all cases. In the case of tests no. 1, 2 and 4 the 
shear stress fields have quite similar characters differing one from another in the 
interface regions placed near the horizontal and vertical edges of the periodicity 
cell quarter. The ( )ix12σ  field obtained for test no. 3 has decisively different 

character: for almost the entire interface the jump of stresses between the matrix, 
interphase and fibre regions is visible. It may confirm the previous thesis based on 
the displacement results dealing with the usefulness of the model proposed for the 
analysis of the interface phenomena.  
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Figure 2.15. Horizontal displacements for test no. 1 
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Figure 2.21. The shear stresses for test no. 3   

The general purpose of the computational experiments performed is to verify 
the stochastic elastic behaviour of the composite materials with respect to 
probabilistic moments of the input random variables: both the Young moduli of the 
constituents as well as the stochastic interface defects parameters. The starting 
point for such analyses is a verification of the probabilistically averaged Young 
modulus in the interphase (example 1). This has been done by the use of the special 
FORTRAN subroutine, while the next tests have been carried out using the 4-node 
isoparametric rectangular plane strain element of the system POLSAP. Material 
parameters of the composite constituents are taken in examples 1 to 3 as 
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=)( 1eE 84.0 GPa, 1ν =0.22, 2.4)( 1 =eσ GPa, =)( 2eE 4.0 GPa, σ ( ) .e2 0 4= GPa, 

2ν =0.34 (expected values and standard deviations of the Young modulus and 

Poisson ratio, respectively).  

2.2.2 Random Composite without Interface 

Defects  

The main aim of the numerical analysis is to verify numerically the elastic 
behaviour of a fibre composite when the Young modulus of composite components 
is Gaussian random variable. Moreover, numerical tests are carried out to state in 
what way, for various contents of fibre (with round section) in a periodicity cell, 
the random material properties of reinforcement and matrix influence the 
displacement and stress distribution in the cell. A quarter of a fibre composite 
periodicity cell is tested in numerical analysis and its discretisation is shown in 
Figure 2.22.  

Figure 2.22. Discretisation of the periodicity cell quarter 

Numerical implementation enabling the computations is made using a 4-node 
rectangular plane element of the program POLSAP (Plane Strain/Stress and 
Membrane Element). The composite structure is subjected to the uniform tension 
(100 kN/m) on a vertical cell boundary (60 finite elements with 176 degrees of 
freedom). Vertical displacements are fixed on the remaining cell external 
boundaries and the plane strain analysis is performed. Twelve numerical tests are 
carried out assuming the fibre contents of 30, 40 and 50 % and the resulting 
coefficients of variation are taken from Table 2.2.  

Table 2.2. Coefficients of variation for different numerical tests
Test number )( 1eα )( 2eα
1 0.10 0.10 
2 0.10 0.05 
3 0.05 0.10 
4 0.05 0.05 
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Each time the first two probabilistic moments of the displacements are 
observed at the interface and on the tensioned vertical edge. In the case of stress 
expectations, location and maximum value of reduced stress are examined. Figures 
2.23 and 2.24 demonstrate radial displacement coefficients of variation of points 
belonging to the fibre-matrix boundary, which depend on the angle β  describing 

their locations on this boundary. 
The results of test no. 1 (Table 2.2) are presented in Figure 2.23, and the next 

figure shows the results of test no. 3; results of the remaining tests (no. 2 and 4) 

agree with them respectively. In both cases coefficients of variation for o90=θ
are omitted on the graphs because of their large values. For fibre contents equal to 

50%, they are approximately 1.5 times greater than for o0=θ  (disproportion of 
the data would give an illegible picture). Therefore, it can be concluded that the 
randomness of displacements on the considered boundary depends mainly on the 
random character of fibre elastic properties, which means  

2,11];[)]([ Ω∈≅ ∂αα xexu (2.55) 
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Figure 2.24. Coefficients of variation in test no. 3  

Fibre contents in periodicity cell influence also displacement coefficients of 

variation on 12Ω∂ . This influence is visible especially at oo 450 ≤≤ θ . For 40% 

contents this decrease is not so sharp, and for 50% plane fraction the tendency is 
the opposite: the coefficient increases up to about 1.5 times of the value obtained at 

o0=θ . In a physical way it may be interpreted as increasing the random measure 
of uncertainty about displacements perpendicular to the fibre boundary of the 
points belonging to its upper part with increasing fibre radius. 

Figures 2.25-2.26 show displacement coefficients of the variation of horizontal 
points belonging to a vertical, uniformly tensioned edge of periodicity cell obtained 
in tests no. 1, 2, 3 and 4 respectively. Real numbers in decreasing order denote 
height on the vertical tensioned edge on the horizontal axes of these figures.  
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Figure 2.26. Coefficients of variation in test no. 2  
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Figure 2.27. Coefficients of variation in test no. 3  

0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

0.5 0.42 0.33 0.25 0.17 0.08 0

h

α

30% fiber contents

40% fiber contents

50% fiber contents

Figure 2.28. Coefficients of variation in test no. 4  

The main conclusion from these results is that the random character of the 
matrix elastic properties influences the randomness of displacements at the 
tensioned edge of the composite specimen tested. Analogously to the previous 
observations it can be written that  
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][)]([ 2exu αα ≅ ; σ∂ ˆΩ∈x (2.56) 

Let us note that the random character of fibre stiffness has rather secondary 
influence here. The curves describing displacement variation coefficients on the 
edge are becoming less and less sharp together with an increase of the coefficients 
of variation of the fibre Young modulus. Increase of fibre contents in the 
periodicity cell, as expected, in all cases decreases variation coefficients of 
tensioned edge displacements, which physically can be interpreted as increasing 
stiffening of periodicity cell by the fibre. 

Now, let us analyse expected values of maximum stresses (in MPa) in fibre and 
matrix specified in Figure 2.29. Darker bars show the maximal stresses in the 
matrix region, while lighter bars denote the fibre region, respectively.  

Generally, it can be observed that the difference between the obtained expected 
values and the results of deterministic tests is approximately equal to the 
computational error. This difference would undoubtedly be much bigger if the 
formula describing these values included a component connected with elasticity 
tensor derivatives. The present version of computer program includes only the first 
two components, which correspond with expected values of displacement 
functions.  

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

30(0)

30(2)

30(4)

40(0)

40(2)

40(4)

50(0)

50(2)

50(4)

Figure 2.29. Expected values of maximal stresses  

The results obtained lead to the conclusion that the most important factor 
influencing the value of maximum stresses is unquestionably the fibre radius, cf. 
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Figure 2.29. In the case of the matrix region, maximum stresses increase 
approximately in direct proportion to fibre radius increment 

RxE ≈)]([ maxσ ; 2Ω∈x (2.57) 

To get an analogous relation for maximum stress appearing in the fibre, it is 
necessary to make a more precise numerical analysis. In tested examples with 
plane fractions of 30, 40 and 50% extremum appeared at 40% contents of fibre in 
the periodicity cell. Another factor, which influences the expected values of 
maximum stresses within a given material, is its coefficient of variation for the 
Young modulus. The following relation can be formulated:  

][)]([ max iexE ασ ≈ ; ix Ω∈ (2.58) 

Finally, it can be observed that there is a third-order influence of stronger 
material random changes of elastic features on maximum stresses in the matrix, 
especially with decreasing fibre contents in the RVE. 

In the context of the present numerical analysis of maximum stresses it should 
be added that, apart from changes in the expected values of these stresses, a change 
of their locations was observed. In order to state the relation between the location 
of changes in the direction of the stress functions extremum and fibre radius 
increment it would be necessary to consider a wider range of this radius variation 
(equivalent to, for example, a surface fraction of 10 to 60%) with simultaneously 
increasing the number of tests (each 1 to 5% for example). The most essential thing 
would be, however, creating a mesh much more precise than the one used in the 
above tests, especially near the composite interface, where we have, of interest to 
us, maximum stresses. 

2.2.3 Fibre-reinforced Composite with Stochastic 

Interface Defects 

The subject of the third numerical example is the fibre-reinforced periodic 
composite, which has been discretised in Figure 2.30 as a cell quarter with smaller 
contact zones on the left and with larger ones on the right. The composite structure 
is subjected to uniform tension on the vertical cell boundary. Six numerical tests 
have been performed assuming interphases with different values of the total 
number of defects (in turn: 0%, 25% and 50% of the interface length). In each test, 
the first two probabilistic moments of the displacements are observed on the phase 
boundary and on the vertical edge subjected to tension and the coefficient of 
variation for displacements. 
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Figure 2.30.  Quarter periodicity cell mesh for the SFEM analysis  

0.0009 

0.0014 

0.0024 

0.0034 

0.0044 

0 11.3 22.5 33.8 45 56.3 67.5 78.8 

0% 
bubbles 

25% 
bubbles 

50% 
bubbles β

E[uh]
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Figure 2.32. Coefficients of variation of horizontal displacements at the interface  
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Figure 2.33. Expected values of horizontal displacements at the tensioned edge  
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Figure 2.34. Coefficients of variation of horizontal displacements at the tensioned edge  

The expected values of the displacements and their coefficients of variation are 
placed on the vertical axes of all figures. The angle β, which determines the 
location of a point on the fibre-matrix interface with respect to the x or y-
coordinate on the tensioned edge, and which is marked on the vertical axes.  

A further general observation is a direct proportionality between the number of 
interface defects and the volume of the contact zone as well as the expected values 
or coefficients of variation of these displacements. Small differences occur in the 
interface expected values of displacements for larger values of the angle β.

By comparing the coefficients of variation of the interface displacements 
(Figure 2.32 and 2.34) quite different forms for the relation between these 
coefficients and the angle β are observed. The model with a large contact zone 
shows a high sensitivity to the number of defects and the changes for the small 
contact zone are proportional. In the case of the coefficients of variation of the 
tensioned edge horizontal displacement both the models give approximately 
reversed effects. For example a small contact zone causes larger coefficients for 
smaller β values than for the larger ones (Figure 2.32). For both sizes of the contact 
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zones the changes in the coefficient α are inversely proportional to the increase in 
the number of discontinuities and show some similarity.  

Finally, in both models the expected values of the displacement are quite 
similar with respect to their locations. In the large contact zone (Figure 2.31 and 
2.33) the differences between the obtained expected values of displacements for 
0%, 25% and 50% of discontinuities are more significant.  

2.2.4 Stochastic Interface Defects in Laminated 

Composite 

The two-component layered composite has been tested in this example. The 
discretisation into 72 finite elements and 233 degrees of freedom as well as the 
mixed boundary conditions is shown in Figure 2.35. Both layers have been 
uniformly extended in the opposite directions to verify the influence of interphase 
between them on the overall behaviour of the structure.  

Figure 2.35. Two-layer laminate in the computational shear test  

Ten numerical experiments have been carried out in the example: the 
deterministic problem (test-d) and the stochastic one without interface defects 
(test-s). In the next experiments the standard deviations of the defects are taken as 

][1.0][ rEr ⋅=σ , ][1.0][ nEn ⋅=σ , and the expected values are shown in Table 2.3 

(contribution of the boundary occupied by bubbles to the total boundary is given in 
brackets).  

Table 2.3. The expected values of the interface defects tested  
 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 

E[r] 5.0E-2 5.0E-2 5.0E-2 5.0E-2 1.0E-1 1.0E-1 1.0E-1 1.0E-1 
E[n] 5 

(10%) 
10
(20%) 

15
(30%) 

20
(40%) 

5
(20%) 

10
(40%) 

15
(60%) 

20
(80%) 

The results of the analyses have been collected in Table 2.3, which shows the 
expected values and the coefficients of variation of the displacements and are 
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generally consistent with those obtained experimentally (in the range of expected 
values). The increases of the expected values in comparison to the results obtained 
in test-d and test-s are included also in this table. The coefficients of variation of 
the horizontal displacements for smaller and greater interphase are presented in 
Figure 2.36 and 2.37 as a function of the location of a point on the 

2
Ω  boundary. 

On the horizontal axis the height of the point (h) in decreasing order is presented: 
the coordinate 2.5 denotes the point belonging to the interface and 1Ω region on the 

extended 2Ω  boundary, while the coordinate 5.0 denotes the point belonging to the 

upper 2Ω  boundary.  

Table 2.4. The expected values and coefficients of variation of the displacements tested 

 Test-d test-s test 1 test 2 test 3 test 4 test 5 test 6 test 7 Test 
8

E[q]
(E-2)

1.924 
2.610 

1.939 
2.633 

2.049 2.089 2.134 2.188 2.686 2.844 3.065 3.408 

∆E[q]
(%)

-0.8 
-0.9 

0.0 
0.0 

5.7 7.7 10.1 12.8 2.0 8.0 16.4 29.4 

α[q] - 0.082 0.078 0.080 0.083 0.089 0.088 0.098 0.120 0.158 

Generally, all the results computed show that the most sensitive region to the 
input random parameters is the point located on the weaker material (matrix) and 
the interphase on the extended 2Ω  boundary. Moreover, analysing the increases of 

the expected values of horizontal displacements on the tensioned boundary the 
significant influence of the stochastic interface defects introduced can be observed. 
In all tests performed the displacements obtained are greater than for the 
composites without defects between the composite constituents.  

Moreover, the increases of the displacements analysed increase faster than the 
increases of the total length of the boundary occupied by the bubbles, which 
follows the stochastic nonlinearity of the model presented. The diagrams of the 
displacements have analogous characteristics to those obtained for the coefficients 
of variation presented later. However, considering the large disproportions between 
the values computed near the interphase and outside it, these graphs have been 
omitted.  
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Figure 2.36. Coefficients of variation of horizontal displacements for shear test (I) 
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Figure 2.37. Coefficients of variation of horizontal displacements for shear test (II) 

Comparing the coefficients of variation of the horizontal displacements it is 
seen that, especially in case of tests no. 5 to 8 (the interphase twice as large as for 
tests 1 to 4) the significant increase of these displacements is about 95% in case of 
test no. 8. These increases are analogous to the increases of expected values greater 
for displacements rather than the corresponding increases of total length of 
interface boundary occupied by the bubbles.  

As can be expected, the statistical response of the laminate should depend on 
the contrast between stronger and weaker layer material properties, interphase 
elastic parameters, the total number of layers in the composite etc. Essentially 
different situation can be observed when both material properties and external load 
are introduced as random variables [273].  
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2.2.5 Superconducting Coil Cable Probabilistic 

Analysis  

The main ideas of the experiment [193] are as follows: (i) comparison of the 
stochastic behaviour of the superconducting coil cable in the original geometry 
with the model in which the technological nonhomogeneities have been 
probabilistically averaged; (ii) verification of the model sensitivity to the assumed 
thickness of the interphase introduced.  

The example of the RVE analysed is presented in Figures 2.38 and 2.39 (all 
geometric dimensions are given in mm). A single discontinuity is modelled by 
complementing two circle quarters (teeths with their sharp sides directed to the 
interior of the superconducting cable). Their radii are equal to 1.5 mm for defects 
on the interface superconducting cable-tube and 2.0 mm for defects on the 
interface cable-jacket. The periodicity cell is subjected to a horizontal uniform 
tension on its vertical boundaries; due to symmetry only one quarter of this cell is 
employed. Displacement boundary conditions on all the remaining external 
boundaries are assumed to satisfy the symmetry conditions.  

Figure 2.38. Superconducting coil cable RVE geometry  

Figure 2.39. Quarter periodicity cell mesh for the superconductor  
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The elastic properties and their probabilistic characteristics of the RVE 
components, the expected values and the standard deviations of Young moduli, 
Poisson ratios and Kirchhoff moduli are collected in Table 2.5.  

Table 2.5.   Elastic characteristics of composite components  
Material E[e] [GPa] σ(e) [GPa] ν G [GPa] 

Tube 205.0 8.0 0.265 81.0 
Superconductor 182.0 0.0 0.300 70.0 
Jacket 126.0 12.0 0.311 48.0 
Insulation 36.0 0.0 0.210 11.0 

The following tests are performed: deterministic test including defects non-
averaged (test 1), an experiment without defects (test 2), an experiment with 
defects averaged in the interphase (test 3) or over the finite elements which they 
belong to (test 4). The first two probabilistic moments of the displacements are 
observed in each test on the interface determined by a radius equal to 9.0 mm 
(between the lower superconductor interphase and the superconductor region). 
Four additional tests are performed in test 3 to verify the results variations with 
respect to the interphase thicknesses: test 3A, where the thickness is equal to the 
expected value of the relevant geometric dimensions of interface defects, test 3D 
with thickness given by eqn (2.22) and tests 3B and 3C with the intermediate 
thicknesses.  

The results of these computations due to tests numbered 1 to 4 are presented in 
Figures 2.40 and 2.41: the expected values of the horizontal displacements and 
their coefficients of variation. The first two moments are marked on the vertical 
axes of these figures, while the angle β, which determines the location of a point 
on the interface considered with respect to the x-coordinate on the horizontal axes. 
The results of tests 3A to 3D are collected in Table 2.6 presented below the figures. 
The expected values of displacements observed (in mm) are given in the upper row 
of each table cell and the coefficients of variation in the lower one.  

0.6

0.7

0.8

0.9

1

1.1

0 9 18 27 36 45

test 1

test 2
test 3

test 4

Figure 2.40. Expected values of horizontal displacements at the tensioned edge 
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Figure 2.41. Coefficients of variation of horizontal displacements at the tensioned edge  

Table 2.6. The expected values and the coefficients of variation of horizontal displacements  
β [°] Test 3A Test 3B Test 3C Test 3D 
0 1.066 

0.0241 
1.069 
0.0237 

1.078 
0.0235 

1.085 
0.0233 

9 1.047 
0.0239 

1.053 
0.0238 

1.057 
0.0234 

1.062 
0.0232 

18 0.985 
0.0236 

0.993 
0.0234 

0.994 
0.0231 

1.003 
0.0230 

27 0.895 
0.0239 

0.897 
0.0235 

0.908 
0.0234 

0.910 
0.0231 

36 0.783 
0.0241 

0.784 
0.0238 

0.784 
0.0235 

0.790 
0.0232 

45 0.631 
0.0212 

0.634 
0.0212 

0.639 
0.0213 

0.645 
0.0214 

Generally, it can be observed that in all stochastic tests the expected values of 
horizontal displacements are greater than the corresponding values obtained from 
deterministic tests, which follow equation (1.134). The greatest expected values of 
displacements observed are obtained for test 4: from 50% (for β≈0°) to 100% (for 
β≈80°) greater than in the remaining tests. Analogous observation can be done for 
the coefficients of variation. Generally, these facts follow the great variances of the 
Young moduli in finite elements containing defects averaged in comparison to the 
remaining elements.  

On the basis of these results it can be stated that the observed probabilistic 
moments of displacements are strongly sensitive to the scale of the composite 
structure, which probabilistic averaging is applied in. A rapid decrease of the total
area of the region averaged results in a significant increase of the effective Young 
modulus and much smaller increases of the expected values for the displacements. 
Further, the expected values obtained in test 2 (without including interface defects 
in any form) give the most exact results of the horizontal displacements computed 
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in the deterministic model. However, for β≈30°, which corresponds to the defects 
location, the best approximation is obtained in test 3 (with interphase zones 
introduced).  

Finally, let us consider the stochastic variations of the interface horizontal 
displacements to the interphase zone thicknesses illustrated by the results collected 
in Table 2.6. It can be observed that increasing thickness causes a small increase of 
the horizontal displacements and a decrease of the coefficients of variation. The 
decrease (or increase) has a linear character and the maximum increment is no 
greater than 2% of the values considered. It confirms the possibility of using the 
model presented in the numerical analysis of stochastic non-homogeneities 
(especially interface defects) in composite materials. To verify the applicability of 
the model presented this sensitivity should be discussed as a function of interface 
defects and elastic properties of composite component stochastic parameters.  

Let us note that the SFEM methodology can be applied in further analyses for 
numerical modelling of random both uncoupled and coupled thermal, electric or 
magnetic fields in various superconducting structures [221,385]. A common 
application of the stochastic perturbation technique with computational plasticity 
algorithms will enable us to perform modelling of interface debonding in the case 
of laminates and fibre-reinforced composites, which will essentially extend our 
knowledge of composites behaviour in relation to the existing models 
[251,384,386].  
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2.3 Homogenisation Approach 

Homogenisation methods present some specific approach to such 
computational analysis of composite materials, where the homogeneous medium 
equivalent to the real composite is proposed. The assumptions decisive for these 
methods are introduced in the context of numerous equivalence criteria; usually it 
is assumed that internal energies per unit mass stored in both systems are to be 
equal. A concept of the Representative Volume Element (RVE) for the composite 
is most frequently used together with the corresponding assumption on a scale 
parameter relating dimensions of the RVE to the entire composite - it has to tend 
to 0, which is usually unrealistic for most of engineering composites. It is evident 
now that the spatial distribution of the reinforcement (uniaxially periodic, with 
rectangular, hexagonal, triangular periodicity or completely random according to 
Gaussian or Poisson distributions) is of decisive importance for the effective 
material tensors [52]. There exist some mathematical approaches, where the scale 
parameter is assumed to be some small and positively defined [370]. It gives a less 
restrictive model, but such an approach has no general corresponding FEM 
computational implementations in the existing software. The essential differences 
between these two methodologies are especially apparent in homogenisation of 
dynamic and transient heat transfer problems, where dispersive effects are 
observed under the last assumption only.  

Most of the homogenisation methods have one common point - the necessity 
of use of the so-called homogenisation functions. These functions are the solutions 
of the cell problem on the RVE under periodic boundary conditions, where some 
additional conditions can be imposed on external boundaries or/and interfaces 
between the composite constituents. Some exceptions can be obtained for the 1D 
homogenisation problems, where effective thermal (and/or elastic) parameters may 
be derived directly. Let us note that if some further assumptions on composite 
microgeometry are introduced (a composite has a specified number of components 
in the periodicity cell and the shapes and/or location of the components are given), 
then the closed form equations for the effective material properties for either 2 or 
3D structures can be derived [6,65,253].  

2.3.1 Unidirectional Periodic Structures   

Let us consider a unidirectional heterogeneous bar in unstressed and unstrained 
state, with periodic structure and with elastic properties piecewise constant. An 
example of the structure under considerations is presented below (Figures 2.42 and 
2.43).  
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αA, βe2, γl
A, e2, l        

Figure 2.42. RVE of two-component composite bar  

Figure 2.43. Unidirectional periodic two-component composite beam  

Using the parameter ε the displacements and stresses are asymptotically expanded 
in the bar as follows [30,43,133,308]:  

...),(),(),()( 2210 +++= yxyxyxx uuuu εεε (2.59) 

and  

...),(),(),()( 2210 +++= yxyxyxx σεεσσσ ε (2.60) 

where ),()( yxiu , ),()( yxiσ  are periodic, too; the coordinate x is introduced in the 

macro scale (Figure 2.43), with y in the micro scale (cf. Figure 2.42). Introducing 
these expansions into classical Hooke law it is found that  
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whereas the equilibrium equation  
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(2.62) 

results in  
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Hence, the following zeroth, first and second order constitutive equations are 
derived:   
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Applying an analogous methodology, the equilibrium equation is expanded as  
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It is observed that zeroth order displacements and stresses depend on the 

macroscale coordiante only )(uu x
00 =  and )(00 xσσ = , so that it can be written 

that  
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Integrating both sides of (2.69) over the periodicity cell of a bar, there holds  
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which leads to the following description of the homogenised (effective) Young 
modulus   

∫
Ω

Ω
=

)(

)(

ye

dy
e eff

(2.71) 
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Such a formulation makes it possible to derive the closed form equations for the 
expected values and covariances of the homogenised Young moduli using classical 
definitions of probabilistic moments or by an application of perturbation theory. It 
is possible to derive such equations for particular engineering examples only if the 
bar has a geometrical characteristics piecewise constant within its length. Let us 
consider further the RVE built up with n piecewise constant components defined 
on Ω by the use of design parameters ( )iii lAe ,,  where ei=const. for ily ∈  and such 

that ji ee ≠  for i,j=1,...,n. Hence, the integration in formula (2.71) can be replaced 

by   
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where the variables Ai, li denote the cross-sectional area and the length of the ith 
structural element. After some algebraic transformations relation (2.72) can be 
transformed to  
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which can be efficiently implemented in any FEM computer program. Let us note 
that an analogous procedure can be applied successfully for the transient heat 
transfer problem Young moduli are to be replaced here by the relevant coefficients 
of heat conduction.  

If the general beam structure is to be homogenised, the equilibrium and 
constitutive equations should be enriched with transversal effect components but, 
for the composite beams having constant Poisson ratio within its length and various 
Young moduli, the formulation posed above is quite sufficient for the needs of 
computational analyses. Moreover, it should be underlined that the homogenisation 
model for 2D and 3D problems is carried out similarly but the effective elasticity 
tensor is to be introduced instead of the Young modulus only. As a result, it is not 
possible to derive any closed form algebraic equations describing the effective 
properties of a composite, which significantly complicates numerical analysis. On 
the other hand, the randomness in multidimensional composite structures appears 
usually in their geometry, too, which must be implemented in the FEM analysis 
using some special finite element types.  

Finally, considering further applications of the homogenisation approach in the 
elastodynamics of engineering structures, the effective mass density of a composite 
can be derived according to the spatial averaging method as [28,265]  
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∫
ΩΩ

= dyyeff )(
1)( ρρ . (2.74) 

Let us mention that this relation is used for any space configuration and 
periodicity conditions of a composite. Since that, having a homogenised 
elastostatic problem, especially in random case, further extension to the 
elastodynamic analysis in the context of a stochastic second order perturbation 
technique does not seem to be very complicated. The expected values for the 
effective Young modulus can be obtained by the second order perturbation second 
probabilistic moment analysis as [162]  
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Using classical probability theory definitions and theorems   
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one can determine that  
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Further, using the analogous methodology the covariance matrix for the 

effective Young modulus ( ))(effeCov  is derived  
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After all possible algebraic transformations and by neglecting the terms of order 
greater than the second, it is obtained that  
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For the particular case of the two-component composite structure there holds  
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Let us consider the case of a 1D bar structure with two homogeneous 
components having deterministically defined geometry (cross-sections and 
lengths) and with Young moduli assumed to be the input random variables. The 
zeroth, first and second order derivatives of the effective elasticity with respect to 
the Young moduli of the composite constituents are obtained by analytical 
derivation:  

• zeroth order components   

( ) [ ] [ ]
[ ] [ ] 221112

2122110)(

lAeElAeE

eEeElAlA
e eff

+
+=

(2.81)

• first order components   
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• second order components   
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Then, the resulting covariance matrix of the effective elastic behaviour for the two 
component composite structure is described as follows:  
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To obtain the stochastic finite element model let us introduce the displacement 
field approximation. The zeroth, first and second order stiffness matrices for the 
homogenised bar structures may be written out by analogy to the previous 
considerations:     
• zeroth order stiffnesses 
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with m denoting the total number of bar intervals with constant cross-sectional 
area A(m) ;  
• first order stiffnesses  
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• second order stiffness  
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Hence, the canonical set of the second order SFEM equations can be rewritten as 
follows:  

0)(0)(0)( effeffeff QqK = (2.90)

0)(),(),(0)( effreffreffeff qKqK −= (2.91)

( ))()(),(),()2)((0)( ,2 eff
r

eff
r

seffreffeffeff eeCovqKqK −= (2.92)

which makes it possible to compute 0)(effq , reff ),(q  and rseff ),(q  and to calculate the 

first probabilistic moments of displacements as  

[ ] ( ))()(),(
2
10)()( , eff

r
eff

r
rseffeffeff eeE Covqqq += (2.93)

( ) ( ))()(),(),()()( ,, eff
r

eff
r

seffreffseffreff eeCovqqqqCov = (2.94)

The expected values and cross-covariances of the stresses are obtained in 
comparison to the heterogeneous model as 
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The first computational example deals with Young moduli defined as 
deterministic function and cross-sectional area being a random field, while in the 
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second Young moduli of the constituents are only randomised. Due to the 
homogenisation method presented, the effective Young modulus is obtained in the 
form of a random field in both cases. Since the fact that homogenisation is only the 
intermediate tool to analyse composite structures, the expected values and standard 
deviations of displacements for homogenised structures are compared against those 
obtained for real, multi-component structure models.  

The results of these analyses make it possible to modify the theoretically 
established probabilistic homogenisation algorithm to approximate expected values 
as well as covariances in the most efficient way. Neglecting the fact that effective 
material characterisation presented above is derived assuming periodicity of a 
composite, we try to use this approach in composites having small number of the 
RVEs on their lengths.  

The first numerical experiment deals with the homogenisation of a beam 
clamped at both sides and subjected to uniformly distributed vertical static load 
(see Figure 2.44), analogously to the computational illustration demonstrated in 
[208].  

                                                          x 3

                                 
               Q(x 1)

                                                                                                                          x1

            e 2                                                                             e 1

                           L/2                                                 L/2  

Figure 2.44. Clamped beam homogenised 

Young moduli of the composite beam constituents discretised here by the use 
of 100 finite elements, are assumed to be deterministic variables, so that 
e1/e2={1.00; 1.25; …; 3.00}, while e2=2.0 GPa and ν1=ν2=0.30. The mesh nodes 
are numbered sequentially from the left to right edge. The cross-sectional area of 
the beam Ar is an input random field defined as  

[ ] 50,...,1;
3.0

0.10 =⎟
⎠
⎞⎜

⎝
⎛ += rx

L
AAE rr   and  A0=5.0 x 10-3

( ) 100,...,1,;07.0;10.0;exp, ===⎟⎟⎠

⎞
⎜⎜⎝

⎛ −
−= sr

xx
AA sr

sr αλ
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Other data are taken as follows:  



Elasticity problems     79 

0
1 )( AfxQ γ+=  for  f =49.61 and γ =7.7126 

while  

( ) 6
1

321
2

32 ;; =+=== ββ xxxrxx IIIAII ; L=1.0 

It is observed that starting from deterministically defined Young moduli the 
effective Young modulus random field is obtained as a result of the cross-
sectional area randomness.  

The main purpose of the SFEM-based tests is to verify the variability of the 
two-moment statistical response of the structure with respect to probabilistic input 
random fields. The results of the analysis are collected in Figures 2.45-2.48. The 
first two figures report expected values (vertical axes) as functions of location 
around the midpoint of a beam (horizontal axes); variable NN denotes here the 
node number where node 51 is the central point. The models outlined in the legend 
correspond to different composite configurations related to e1/e2 value – model 2R 
is equivalent to computational analysis of the beam in its real heterogeneous 
configuration with the Young moduli relation taken as 1.25. Thee data labelled as 
model 2H denote SFEM analysis results for the same homogenised model. The 
data obtained for model 1 denote the homogeneous beam withe1=e2, while ‘j’ from 
‘model jR’ or ‘model jH’ is equivalent to the relation taken from the set 
{1.00;1.25;…;3.00}, accordingly.  

Figure 2.45. Expected values of the beam displacements 
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Figure 2.46. Expected values of the beam displacements  

Figure 2.47. Standard deviations of the beam displacements 
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Figure 2.48. Standard deviations of the beam displacements 

Analysing the results presented in Figures 2.45 and 2.46 as well as 2.47 and 
2.48 it is seen that the homogenised structure approximates the real one with 
satisfactory precision, which is observed especially for smaller values of the 
relation e1/e2. It can be seen that this approximation effectiveness has the same 
character for the expected values and standard deviations of displacements 
analysed. It is characteristic that while probabilistic moments of structural 
displacements are symmetric for symmetric boundary conditions imposed on the 
homogenised beam then for a real composite beam this field has not the symmetric 
character at all with greater values under the weaker part of a beam. Further, 
relating standard deviations to the corresponding expected values, it is observed 
that output coefficients of variance for displacements are equal to 0.05 (in real and 
homogenised beam) which, taking into account limitations of the perturbation 
technique, enable one to confirm the usefulness of this methodology for such an 
analysis. It should be underlined that neglecting the bending effects in 
homogenisation procedure has no effect on the differences observed because the 
Poisson ratio of both composite components is the same while the 3D beam finite 
element used is quite appropriate for that analysis.  

Two-component linear elastic composite bar is built up with two homogeneous 
components with the following material and geometrical data: E[e1]=3000, A1=4, 
l1=15, E[e2]=2500, A2=2, l2=10 are considered (see Figure 2.49). The covariance 
matrix of Young moduli variables is assumed to be equal:  
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while the external loads Q1=200 and Q2=250 are applied to the structure:  

                                           1                              6                               12  

                                                                                  Q 1                            Q 2

                                                         L 1                              L 2

Figure 2.49. Two-component bar structure 

The expected value and the covariance matrix of the effective Young modulus 
are calculated first and next, probabilistic moments of displacements and stresses 
for the original composite are computed. We compare these results against those 
determined for the homogenised structure. The input data and the results of 
computations are collected in Table 2.7 given below – the components of 
covariance matrix are equivalent to 10% standard deviation of the input Young 
moduli according to the following relation:  
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Table 2.7.
Probabilistic data and intermediate results for computational experiments  
Model 

no 
Input data  
(1st probabilistic  moments) 

Input data  
(2nd probabilistic moments) 

1 E[e1,e2]={3000,2500} ( ) 310
500,62.

000,75000,90
, ×⎥
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Next, the first two probabilistic moments of horizontal displacements are 
analysed along the bar. The results obtained for the stiffer part show better 
approximation by model 2 (with covariance matrix homogenised), while for a 
weaker part by model 3 (with original covariance matrix). Quite a different 
situation is observed for the standard deviations - those resulting from model 3 
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approximate those obtained in model 1 very well, while the results of model 2 are 
definitely smaller.  

Table 2.8. Expected values and standard deviations of beam displacements 
Node Expected values Standard deviations 

Number 
(NN) 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

1 0 0 0 0 0 0 

2 0.0789 0.0825 0.0829 7.81E-03 5.89E-03 8.61E-03 

3 0.1578 0.1649 0.1659 1.56E-02 1.18E-02 1.72E-02 

4 0.2367 0.2474 0.2488 2.34E-02 1.77E-02 2.58E-02 

5 0.3156 0.3298 0.3318 3.13E-02 2.35E-02 3.45E-02 

6 0.3945 0.4123 0.4147 3.91E-02 2.94E-02 4.31E-02 

7 0.4734 0.4947 0.4976 4.69E-02 3.53E-02 5.17E-02 

8 0.5786 0.586 0.5895 5.73E-02 3.80E-02 5.97E-02 

9 0.6838 0.6772 0.6813 6.77E-02 4.06E-02 6.76E-02 

10 0.7891 0.7684 0.7732 7.81E-02 4.32E-02 7.56E-02 

11 0.8943 0.8596 0.865 8.85E-02 4.59E-02 8.36E-02 

12 0.9995 0.9509 0.9569 9.90E-02 4.85E-02 9.16E-02 

13 1.1045 1.0421 1.0487 0.1094 0.0511 9.95E-02 

Taking into account the results of computational experiments presented in Table 
2.8, the following algorithm is proposed to model strictly periodic composite 
beams using homogenisation-based SFEA.  

Input random variables definition

[ ] ( )sr
r bbCovbE ,,

Initial boundary value problem

0, =+ εε γσ jij

→ solve:
00)(0)( QqK =εε

0)(),(),(0)( εεεε qKqK rr −=

( ) ( )srrssr bbCov ,2 0)(),(),(),()2)((0)( εεεεεε qKqKqK −−=
Evaluation of effective Young moduli parameters

[ ] ( )seffreffeff eeCoveE )()()( ,,
Homogenised boundary value problem:

0)()(
, =+ effeff
jij γσ

1st SFEM solution (zeroth order homogenised displacements):
→ solve:

00)(
]1[

0)( QqK =effeff

0)(
]1[
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]1[

0)( effreffreffeff qKqK −=
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2nd SFEM solution (first and second order homogenised displacements)
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Final evaluation of displacements probabilistic moments
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Figure 2.50. Algorithm of homogenisation-based SFEM analysis  

It should be underlined that such a stochastic second order homogenisation 
scheme has its basis in the computational observations only. However its results 
are in good agreement with those observed for the real composite model subjected 
to the same boundary conditions.

2.3.2 2D and 3D Composites with Uniaxially 

Distributed Inclusions  

This class of composites is equivalent to all 2D and 3D periodic heterogeneous 
structures where isotropic homogeneous constituents are distributed periodically 
along the x3 axis, which in practice is observed in case of the periodic laminates. 
Further, it should be mentioned that the effective elasticity tensor components valid
for these structures can be reduced to the periodic bar structure shown above only 
if the 1D case is considered. The following system of partial differential equations 
is considered here to calculate probabilistic moments of the effective elasticity 
tensor [159]:  

( ),,,
3 xijlkijkl fu

x
C =⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ δ

δ
( ) ( )xuxu o=δ ,  x∈∂Ω. (2.97)

According to the general theory, the homogenised formulation of the problem has 
the following form:  

( ) ( ),,,
)( xijlk

eff
ijkl fuC = ( ) ( )xuxu o= ,   x∈∂Ω. (2.98)
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where the effective coefficients )eff(

ijkl
C  are given by the formula. The 

homogenisation functions ( )yχ
kl  are determined as the solution of the local 

problem on the RVE  
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for any ( )yχ
mn  periodic on the RVE. Since the heterogeneity distribution is 

observed along 
3

y  axis only, a solution should be of the form ( ) ( )3ymnmn
χyχ = . It 

yields the following problem for determination of ( )
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for any ( )
3

ymn
χ  being periodic on the RVE. Therefore, (2.100) is ordinary 

differential equations system, which can be solved explicitly as  
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If the elasticity tensor components 
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Taking into account that the state functions depend on y3 axis only, the effective 
parameters are expressed as  

Ω
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33

(2.106)

Finally, the homogenised elasticity tensor components are given by  
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In case of isotropic and linear elastic constituent materials of this composite, it is 
obtained after some algebraic manipulation [159,177]  
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while the remaining components are equal to 0. The layered structure analysed in 
this experiment has material characteristics corresponding to a glass-epoxy 
composite: E[e1]= 84.0 GPa, σ(e1)= 8.4 GPa, ν1=0.22 and E[e2]= 4.0 GPa, σ(e2)= 
0.4 GPa, ν2=0.34; the volume ratios are taken as equal. The results of 
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computational analysis are collected as deterministic quantities, expected values 
and coefficients of variation computed for the particular components in Table 2.9 
below.  

Table 2.9. Effective materials characteristics 

Effective elasticity 
tensor components 

Deterministic Expected value Variation 

C1111=C2222 29.2316 GPa 29.2260 GPa 0.0767 
C3333 10.4662 GPa 10.4566 GPa 0.0954 
C1133=C3311=C2233=C3322 6.1479 GPa 6.1424 GPa 0.0954 
C1122=C2211 34.3657 GPa 34.3601 GPa 0.0794 
C1212=C2121 50.7785 GPa 50.7785 GPa 0.0936 
C2323=C3232 51.5489 GPa 51.5608 GPa 0.0968 

Comparing the results presented in Table 2.9 it is seen that there is no 
difference between the deterministic result and the corresponding expected values 
for effective tensor components, while the coefficient of variation has values 
generally smaller or almost equal to the corresponding input variables value 0.1. 
To verify the variability of the tensor with respect to input Young moduli expected 

values, the MAPLE plot3d option for [ ])(
2323

effCE  and ( ))(
2323

effCα  has been applied; the 
remaining components show almost the same tendencies. The range of variability 
for both the composite components Young moduli is taken as ±10% of the original 
values and, as can be observed in Figures 2.51 and 2.52, Young modulus of the 
weaker material appears to be the decisive parameter for the overall elastic 
characteristics of this composite in terms of a homogenisation method applied. 

Further, it can be noticed that an increase of the coefficient of variation ( ))(
2323

effCα
results from decreasing matrix Young modulus, while the inverse relation is 

observed in case of [ ])(
2323

effCE .

Figure 2.51. Expected values for C2323 component  
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Figure 2.52. Coefficients of variation for C2323 component 

It should be underlined that the model for one dimensionally distributed 
inhomogeneity is valid after some minor simplifications for the heat conduction 
homogenisation of the same composites, since probabilistic numerical algorithm 
has a quite general character.  

2.3.3 Fibre-Reinforced Composites  

2.3.3.1 Algebraic Equations for Homogenised 

Characteristics 

It should be emphasised that the homogenisation procedure can be applied to 
the fibre-reinforced composite with anisotropic consituents, too. The effective 
elasticity tensor in terms of different transverse and longitudinal Young moduli and 
Poisson ratios can be calculated explicitly using the Mori-Tanaka or the self-
consistent analytical homogenisation technique as follows [18,31]:  

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+
−+

=

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

12

31

23

33

22

11

12

31

23

33

22

11

0.

00

000

000

000

ε
ε
ε
ε
ε
ε

σ
σ
σ
σ
σ
σ

p

psym

m

mk

mkmk

lln

(2.113)

where the following description for the constants k, l, m, n and p is applied:   



Elasticity problems     89 

( )
( )mfmmf

mfmmfmf

ppcpc

pppcppc
p

++
++

=
2

2 2 (2.114)

( ) ( )
( )( )fmmfmmmm

mmffmmmmfm

mcmcmkmk

mcmcmkmkmm
m

+++
+++

=
2

2 (2.115)

( ) ( )
( ) ( )mfmmmf

mfmmmmff

mkcmkc

mkmcmkkc
k

+++
+++

=
(2.116)

( ) ( )
( ) ( )mfmmmf

mfmmmmff

mkcmkc

mklcmklc
l

+++
+++

=
(2.117)

( )
mf

mf
mmffffmm kk

ll
lclclncncn

−
−

−−++=
(2.118)

There holds for matrix and fibre   
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where cf and cm denote fibre and matrix volume fractions of a composite measured 
in the direction transverse to the fibres. The indices L and T denote longitudinal 
and transversal elastic characteristics for the components. It can be observed that 
closed form relations for effective elasticity tensor components are obtained in this 
case without the necessity of a cell problem solution. 

Two alternative ways of fibre-reinforced composite homogenisation have been 
proposed below. Since the fact that the computational illustration for the SFEM 
solution of the cell problem is shown in [192], then only the second order 
perturbation based model is discussed here. The composite taken to illustrate 
probabilistic moments of relevant material properties is exactly the same as in the 
previous example. The final equations for the effective characteristics for a layered 
and fibre-reinforced composite do not contain any shape parameters - different 
forms of the reinforcement lead, according to some mathematical considerations, to 
different equations rewritten however for the same parameters: material properties 
and volume ratios of the constituents only. That is why such a comparative studies, 
especially in terms of the random spaces of the material properties analysed, are 
important.  

The deterministic and the corresponding expected values as well as coefficients 
of variation are collected in Table 2.10 for the components of the effective tensor k,
l, m, n and p, separately. Generally, it can be observed that, as previously noted, 
expected values are almost equal to relevant deterministic quantities and the 
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resulting coefficients of variation are almost equal to the corresponding input 
probabilistic coefficients. Further, comparing the data collected in Tables 2.9 and 
2.10 it can be noted that the layered structure has greater effective elastic 
characteristics than the fibre-reinforced composite with the same constituents -
this observation is very important considering practical applications and 
optimisation of composites.  

Table 2.10. Effective materials characteristics 

Effective elasticity  
tensor components 

Deterministic Expected value Variation 

k 6.8350 GPa 6.8216 GPa 0.0902 
l 5.2983 GPa 5.2898 GPa 0.0909 
m 3.5892 GPa 3.5840 GPa 0.0927 
n 46.9052 GPa 46.9000 GPa 0.0938 
p 4.0195 GPa 4.0121 GPa 0.0907 

Further, see Figures 2.53-2.62, the parameter variability of the expected values 
of the effective parameters k, l, m, n and p (Figures 2.53, 2.55, 2.57, 2.59 and 2.61) 
as well as their variances (Figures 2.54, 2.56, 2.58, 2.60 and 2.62) is computed 
with respect to expected values of the Young moduli of the components. It is seen 
that the expected values of all these parameters show greater sensitivity with 
respect to stronger material Young moduli; all the changes are significant 
especially for decreasing values of both moduli. As can be predicted from these 
figures, the sensitivity gradients of all the parameters have positive signs - an 
increase of any effective constant k, l, m, n and p results from the increase of 
Young moduli of fibre or/and matrix. In further computational studies, the 
probabilistic moments so computed may be applied in the FEM-based 
probabilistic computational simulation for an engineering composite by using the 
Monte Carlo simulation technique or, as is done in the first example, the SFEM 
approach.  

Figure 2.53. Expected values of the component k
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Figure 2.54. Variance of the component k

Figure 2.55. Expected values of the component l

Figure 2.56. Variance of the component l
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Figure 2.57. Expected values of the component m

Figure 2.58. Variance of the component m

Figure 2.59. Expected values of the component n



Elasticity problems     93 

Figure 2.60. Variance of the component n

Figure 2.61. Expected values of the component p

Figure 2.62. Variance of the component p
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2.3.3.2 Asymptotic Homogenisation Method 

2.3.3.2.1 Deterministic Approach to the Problem  

The homogenisation of the n-component periodic composites in the context of 
linear deterministic elastostatic problem is studied here; the effective modules 
method worked out previously for two-component heterogeneous media is now 
extended on the n-component composites to homogenise multi-component 
materials in general form. The approach proposed enables particularly, as is 
demonstrated, to calculate effective elastic characteristics for composites with 
some interphases between the constituents. As it is known, the interphase in 
engineering practice may be considered as the next homogeneous component of 
the composite with small volume in comparison to the rest of a structure that 
increases contact between reinforcement and matrix and can be crucial for the 
composite macro-behaviour [59,255,270,314]. One of the interphase 
computational modelling method is based on the special (both elastic and 
elastoplastic) interface finite elements [238,260,318].  

On the other hand, there are some approaches in the mechanics of composite 
materials, where the interphase is the hypothetical region containing all interface 
defects that appear between the original components of a composite. Usually, the 
interphase is introduced with thickness and material parameters constant within its 
region; ultrasonic emission seems to be the most efficient experimental method in 
this field. Numerical studies based on this formulation and collected in this chapter 
show the sensitivity of the periodic composite effective parameters to 
strengthening and weakening, in the context of elastic parameters, of the 
interphase. Due to the fact that the observations correspond with engineering 
practice, it may confirm the usefulness of the method to homogenise n-component 
heterogeneous media.  

Very important aspect of the method proposed is that the effective modules 
method in present extended version enables to homogenize the composite materials 
with the microdefects appearing in the constituents – they have the dimensions 
relatively small with comparison to the components. Next, we observe that the 
method presented can be relatively easily transformed to the probabilistic case 
where material properties as well as the periodicity cell geometry may be treated as 
random; the Monte Carlo simulation method is the most recommended technique. 
This formulation may be used to formulate and to compute the deterministic or 
stochastic sensitivity, in a phenomenological or structural sense, to both material 
and geometrical parameters of the composite that enable one to find out the most 
decisive parameters for the entire computational homogenisation procedure.  

The linear problem of elasticity is formulated for the n-component composite 
shown in Figure 2.64 with the Representative Volume Element given in Figure 
2.63 as follows:  



Elasticity problems     95 

( )
( )⎪

⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+=
=

Ω∈=
Ω∈=

=

εεε

εεε

ε
σ

ε

ε

ε
εσ

∂
∂σ

∂
∂σ

kllkkl

klijklij

ui

ijij

j

ij

uu

C

u

pn

x

,,2
1

;0

;

0

x

x

x
i,j,k,l=1,2 

(2.120)
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Figure 2.63. Cross-section of periodic composite structure 

Figure 2.64. The RVE of plane composite 

Let us assume that all interfaces of the composite are perfect in the sense that  

[ ] 0=ε
iu , [ ] 0=Γ

jij nσ (2.121)

where the symbol [.] denotes a jump of the respective function values at the 

interface. The homogenisation problem is to find the limit of solution εu  with ε
tending to 0. For this purpose let us consider a bilinear form ( )vu,a ε  defined as 

follows:  

( ) ( )∫
Ω

Ω= dCa klijijkl )()(, vuvu x εεε
ε (2.122)

and the linear form:  
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( ) ( )∫∫
ΩΩ

Ω+Ω=
σ∂

∂dvpdvFL iiiiv (2.123)

both in a Hilbert space  

( )( ){ }0,
31 =Ω∈=

Ωu
HV

∂
vvv (2.124)

characterised by the norm  

∫
Ω

Ω= dijij )()(
2

vvv εε (2.125)

A variational statement equivalent to the equilibrium problem (2.120) is to find 

V∈εu  fulfilling the equation  

( ) ( )vvu L,a =εε (2.126)

for any V∈v . Let us introduce for this purpose a space of periodic functions 

( )( ){ }31,)( Ω∈=Ω HP vv  so that the trace of v is equal on opposite sides of Ω. Let 

us denote for any )(, Ω∈ Pvu

( ) ∫
Ω

Ω= dCa klijijkly )()()(, vuyvu εε (2.127)

and introduce a homogenisation function )()( Ω∈ Pkijχ  as a solution for the local 

problem on a periodicity cell:  

( )( ) 0,)( =+ wnkkijkijy ya δχ (2.128)

for any )(Ω∈ Pw ; kiδ  denotes the Kronecker delta while kn  is the unit coordinate 

vector. Assuming finally that:  

)( 3ℜ∈ ∞LCijkl
(2.129)

jiklklijijkl CCC == (2.130)

ijijklijijkl CCC ξξξξ 00 ;0 ≥>∃ , jiijji ξξ =∀ , (2.131)

we may introduce a homogenisation theorem as follows:   

Homogenisation theorem  

The solution εu of problem (2.126) converges weakly in space V
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uu →ε (2.132)

if the tensor ( )yε
ijklC  is Ω-periodic and its components fulfil conditions 

(2.129-2.131). Solution u  is the unique one for the problem  

V∈u :   ( ) )(, vvu LD = (2.133)

for any V∈v and  

( ) ∫=
Y

klijijkl dYDD )()(, vuvu εε (2.134)

where  

( ) ( )( )qqklqklppjipijyijkl yyaD nn δχδχ ++
Ω

= )()( ,
1

(2.135)

As a result of this theorem, a limit for 0→ε  gives a homogeneous elastic material 
described by the tensor [163]:  

( )( ) Ω+
Ω

= ∫
Ω

dCCC kl
y
mnijmnijkl

eff
ijkl )()()(

1
)(

)( yyy χε (2.136)

The most important result is that neither the local problem nor the statement 
(2.136) really depend on the stress boundary conditions since that solution obtained 
has a general character. To show formally these results, the local problem is 
rewritten in its differential form 

( ) ( )( ) 0u =+ iiklijkl
j

FC
x

ε
ε ε

∂
∂ x ; Ω∈= yx

ε ; 0=ε
iu  for Ω∈∂y

(2.137)

Next, similarly to the stochastic perturbation approach, an asymptotic expansion is 
employed in terms of the parameter ε as follows:   

...),(),(),()( )2(2)1()0( +++= yxyxyxx iiii uuuu εεε (2.138)

where ),()( yxm
iu  are periodic in y  with a periodicity cell Ω. The main idea of this 

expansion is presented schematically in Figure 2.65: to better illustrate the meaning 
of (2.133) only a quarter of the composite is shown.  
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Figure 2.65. First order asymptotic expansion of displacements in a composite  

Let us note that differentiation separates the coordinates x  and y , so that  

)()()( 1 vvv y
ij

x
ijij εεε ε+= (2.139)

where the strain tensors )(vx
ijε , )(vy

ijε  correspond to small deformations   
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Thus, (2.132) can be rewritten as follows:  

( )( ) 0...)2(2)1()0(
32

1
1

2 =++++++ −−
iiii FuuuLLL εεεε (2.141)

where  
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Next, we equate to 0 the terms with the same order of ε, obtaining an infinite 
sequence of equations. The relations adequate to its zeroth, first and second orders 
can be written as  
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0)0(
1 =iuL (2.145)

0)0(
2

)1(
1 =+ ii uLuL (2.146)

0)0(
3

)1(
2

)2(
1 =+++ iiii FuLuLuL (2.147)

The displacements fields )0(
iu , )1(

iu  and )2(
iu  can be found from these equations 

recurrently only if x  and y  are independent variables. Let us note also that the 

equation  

01 =+ ii PuL (2.148)

with iu  being Ω-periodic function has a unique solution for  

∫
Ω

=
Ω

= 01
1

ydPP ii

(2.149)

Further, if the unique solution u(x,y); Ω∈x  of (2.148) is constant then for all x
(where x plays here the role of parameter) we have .0 constu =  Considering this 

fact it can be obtained that  

)(),()0( xyx ii uu = (2.150)

which can be observed in Figure 2.65 as well. It can be observed that the first term 
of the expansion of u does not depend on the micro variable y and can be 
considered as a mean displacement altered by the higher order terms only. Thus, 
(2.146) takes the following form:  

( ) ( ) 0)()(),( )0()1(
1 =+ xyyx k

l
ijkl

j
i u

x
C

y
uL

∂
∂

∂
∂ (2.151)

The solution is obtained by separation of x  and y

( ) ( )xxyyx ik
l

ikli uu
x

u += )()(),( )0(
)(

)1(

∂
∂χ (2.152)

The last two equations give the formulation for the Ω-periodic functions )()( yiklχ
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which completes our consideration of general homogenisation method for linear 
elastostatic problems.   

It is relatively easy to see that the local problems for homogenisation functions 
)()( yiklχ  reduce to the equations given above for any region Ωa where na ≤≤1

for the so-called fibre-like composite materials where one component is placed 
into the next one, etc.  Let us denote by ),1( kk −Γ  the interface between components 

Ωa-1 and Ωa. Then the following conditions are true for a=2,...,n and ),1( aax −Γ∈ :    

[ ] 0=kl
iχ (2.154)

and 

( ) [ ]
),1(),1(

)()(
aaaa

ipqjpqijjpqij FnCn
−− ΓΓ

==χσ (2.155)

[ ] )1()(

),1(

−

Γ
−=

−

a
pqij

a
pqijpqij CCC

aa

;   ),1( aa−Γ∈x (2.156)

Summing up all the considerations on the homogenisation problem (2.126), we 
compute the effective elasticity tensor components given by (2.136) using the 
homogenisation functions ikl )(χ  being a solution of a classical well-posed 

boundary value problem with periodicity conditions on the external boundaries of 
Ω. The stress boundary conditions are equal to the difference of constitutive tensor 
components at the particular composite interface. The variational formulation 
necessary for a finite element formulation of the local problem can be introduced 
as follows:  

( ) ( ) ( ) ∫∑ ∫∑ ∫
Ω= Γ= Ω

Ω+Γ−=Ω
−

dvfdvndC ii

n

a
ijpqij

n

a
ijpqklijkl

aaa 2
)(

1
)(

),1(

χσεχε v (2.157)

which by neglecting body forces leads to  

( ) ( ) ∑ ∫∑ ∫
= Γ= Ω −

Γ−=Ω
n

a
iipq

n

a
ijpqklijkl

aaa

dvFdC
2

)(
1

)(
),1(

vεχε (2.158)

Having determined the homogenisation functions for the n-component composite, 
the effective elasticity tensor components from (2.136) are calculated as the result.  

The general configuration of the n-component composite denotes that there are 
m interfaces in the periodicity cell where Nm ∈  and 1−≥ nm . It can be observed 
that for coherent components, as was assumed at first, the case of m=n-1
(minimum value of m) is equivalent to the fibre-like composite characterised in 
the previous section or the composite where n-1 components are embedded into 
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one matrix. In that case the variational formulation of the homogenisation problem 
has the following form:  

( ) ( ) ∑ ∫∑ ∫
−

= Γ= Ω
Γ−=Ω

1

2
)(

1
)(

),1(

n

a
iipq

n

a
ijpqklijkl

aa

dvFdC vεχε (2.159)

Moreover, it can be seen that the n-component composite in a general 
configuration generates, due to the component permutation scheme, the bounded 
set of (n-1)! various effective elasticity tensors. If some components are disjoint, 
the total number of these subsets must be included in the permutation procedure. It 
would be interesting to calculate, due to the homogenisation method presented, the 
upper and lower bounds of the effective elasticity tensor components for such a set 
of permutations.  

Next, it is observed that in the general case the effective elasticity tensor 
components can be calculated by the following modification of (2.159):  

( ) ( ) ∑ ∫∑ ∫
= Γ= Ω

Γ−=Ω
m

r
pq

n

a
ijpqklijkl

ra

ddC
1

)(
1

)( vFvεχε (2.160)

where the RHS summation is carried out along all interfaces detected in the 
composite periodicity cell. Further, if any interface shows some finite number of 
nonsmoothness, the integration over such contour to be replaced with the sum of 
integrals defined on partially smooth curves composing the interface.  

Finally, it is observed that the effective modules method of homogenisation 
formulated by (2.158) - (2.159) enables one to calculate effective properties for 
the composites including microdefects or interface defects; it can be done by 
equating the appropriate material characteristics to 0 for these regions. For this 
purpose, the computational procedure applied in numerical experiments can be 
linked with the program for digital processing of composite cross-section images.  

Now let us consider the Finite Element Method discretisation of the 
homogenisation problem. Let us introduce the following approximation of 
homogenisation functions irs )(χ  (i,r,s=1,2) at any point of the considered 

continuum Ω  in terms of a finite number of generalised coordinates α)(rsq  and the 

shape functions αϕ i

ααϕχ )()( rsiirs q= ,  2,1,, =sri , N,...,1=α (2.161) 

In the same way the strain )( )(rsij χε  and stress )( )(rsij χσ  tensors are rewritten as  

ααχε )()( )( rsijrsij qB= (2.162) 

ααχεχσσ )()()()( )()( rsklijklrsklijklrsijrsij qBCC === (2.163) 
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where αklB  represents the shape functions derivatives. Introducing (2.162) -

(2.163) into the virtual work equation in its variational form it is found that  

[ ]∫ ∑ ∫
Ω = Γ

Γ Γ=Ω
m

p
irsirslkrsijkljirs

p

p
dFdC

2
)()(,)(,)( δχχδχ       (no sum on r,s)

(2.164) 

Furthermore, let us define the composite global stiffness matrix as  

Ω== ∑ ∫∑
= Ω=

dBBCKK
E

e
klijijkl

E

e

e

e11

)(
βααβαβ (2.165) 

Using this notation in (2.164) and minimising the variational statement with 
respect to the generalised coordinates we arrive at  

αααβ )()( rsrs QqK = (2.166) 

with α)(rsQ  being the external load vector containing the boundary forces given by 

(2.155) - (2.156), which is employed to determine the homogenisation function 

irs )(χ  in three numerical tests for r,s=1,2. To ensure the symmetry conditions on a 

periodicity cell, the orthogonal displacements and rotations for every nodal point 
belonging to the external boundaries of Ω  are fixed. For the functions irs )(χ  so 

defined we compute the stresses )( )(rsij χσ  and average this tensor numerically 

over the region Ω  according to the formula (2.136). 
The fibre-reinforced glass-epoxy composite example with an interphase 

between the fibre and the matrix is analysed in computational experiments [163]. 
The microgeometry of the periodicity cell is shown in Figure 2.66, while material 
characteristics of the constituents are collected in Table 2.11.  

The weaker interphase in our tests may simulate any boundary defects 
appearing in fibre-reinforced composites that are caused by the difference in 
thermal stresses during the fabrication process in metal matrix composites (MMC) 
for instance. On the other hand, a stronger interphase model homogenised 
numerically is equivalent to the case when some layer between the fibre and matrix 
is introduced to enforce component interface bonding strength.  

Generally, 11 groups of computational experiments are performed to compute 
the effective elastic and thermal characteristics for the composite considered. 
Material properties are increased in the interphase starting from 50% of additional 
matrix characteristics with increments equal to 10% for each of the next test group. 
Thus for the 6th group the interphase equivalent to the matrix is obtained and for 
the 11th the material properties of the interphase are equal to 150% of the matrix 
parameters; the results of this analysis are presented in Table 2.12.
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Figure 2.66. Microgeometry of the periodicity cell 

Table 2.11. Material data for composite components   

Material e ν
Glass fibres 72.38 0.200 
Epoxy matrix 2.75 0.350 

Table 2.12. Effective elastic and thermal parameters  

Test no )(
1111

effC )(
1122

effC )(
1212

effC

1 8.566 3.122 14.577 
2 8.815 3.209 14.580 
3  9.020 3.278 14.582 
4  9.197 3.337 14.584 
5  9.338 3.391 14.586 
6  9.474 3.445 14.588 
7  9.610 3.503 14.589 
8 9.761 3.572 14.591 
9 9.949 3.681 14.593 
10 10.619 4.218 14.594 
11 11.399 4.940 14.596 

Analysing these results it can be concluded that all effective parameters show 
some sensitivity to the improved interphase and its material parameters. The 

greatest sensitivity is obtained for )(
1122

effC  and )(
1111

effC  components, while the smallest 

for )(
1212

effC . To obtain more realistic results it will be valuable to introduce 

anisotropy in the equivalent parameters of the interphase; in that case the 

sensitivity of the )(
1212

effC  component increases significantly. However, neglecting 

these disproportions the results computed lead us to the conclusion that the 
improved homogenisation method confirms the crucial role of the interphase on the 
overall characteristics of the composite structure, which is observed in engineering 
practice. Moreover, the variability resulting from computational experiments 
confirms generally the usefulness of the homogenisation method proposed. Other 
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series of computational tests are done to the visualisation of the homogenisation 
functions as well as the resulting stresses and various numerical error estimators.  

Figure 2.67. Boundary conditions for homogenisation problems 
11

χ

Figure 2.68. Horizontal components of the homogenisation function 
11

χ

Figure 2.69. Vertical components of the homogenisation function 
11

χ
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Figure 2.70. Horizontal stresses in the homogenisation problem 
11

χ

Figure 2.71. Vertical stresses in the homogenisation problem 
11

χ

Figure 2.72. Shear stresses in the homogenisation problem 
11

χ
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Figure 2.73. Vortex visualization of the homogenisation function 
11

χ

Figure 2.74. Relative error of the stresses determination in the problem 
11

χ

Figure 2.75. Relative error for strain determination in the homogenisation problem 
11

χ
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Figure 2.76. Relative error of the strain energy determination 
11

χ

Figure 2.77. Horizontal components of the homogenisation function 
12

χ

Figure 2.78. Vertical components of the homogenisation function 
12

χ
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Figure 2.79. Total values of the homogenisation function 
12

χ

Figure 2.80. Horizontal stresses in the homogenisation problem 
12

χ

Figure 2.81. Vertical stresses in the homogenisation problem 
12

χ
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Figure 2.82. Shear stresses in the homogenisation problem 
12

χ

Figure 2.83. Equivalent von Mises stresses in the homogenisation problem 
12

χ

Figure 2.84. Vortex visualization of the homogenisation function 
12

χ
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Figure 2.85. Relative error of the stresses determination in the problem 
12

χ

Figure 2.86. Relative error of the strain determination in the problem 
12

χ

Figure 2.87. Relative error of the strain energy determination 
12

χ
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Figure 2.88. Horizontal components of the homogenisation function 
22

χ

Figure 2.89. Vertical components of the homogenisation function 
22

χ

Figure 2.90. Total values of the homogenisation function 
22

χ
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Figure 2.91. Horizontal stresses in the homogenisation problem 
22

χ

Figure 2.92. Vertical stresses in the homogenisation problem 
22

χ

Figure 2.93. Shear stresses in the homogenisation problem 
22

χ
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Figure 2.94. Vortex visualization of the homogenisation function 
22

χ

Figure 2.95.  Relative error of the stresses determination in the problem
22

χ

Figure 2.96. Relative error of the strain determination in the problem 
22

χ
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Figure 2.97. Relative error of the strain energy determination 
22

χ

The results of the computational analysis carried out in this section show that 
the effective properties of the composite and, at the same time, the overall 
behaviour of the composite, in the context of the homogenisation method, are 
sensitive to the interphase between the constituents and its material parameters. It 
should be underlined that the interphase, improved in the example presented above, 
has small total area in the comparison to the fibre and matrix. It can be expected 
that the previous, simplified approach (upper and lower bounds or direct 
approximations of effective properties cited above) do not enable us to arrive at 
such effects.  

Considering the assumption that the scale factor between the RVE and the 
whole composite structure tends to 0 in our analysis and, on the other hand, that 
this quantity in real composites is small but differs from 0, the sensitivity of the 
effective characteristics to this parameter are to be calculated in the next analyses 
based on this approach. To carry out such studies, the scale parameter has to be 
introduced in the equations describing effective properties and next, due to the 
well-known sensitivity analysis methods, the influence of the scale parameter ε
relating composite micro- and macrostructure may be shown. In the analogous 
way we can study the sensitivity of the effective characteristics of the composite to 
the component material parameters but there is no need in this case to introduce 
any extra components into the equations cited above.  

Further mathematical and computational extensions of the model presented 
should be provided to include in the constitutive tensor the components responsible 
for the thermal expansion [228,311]. Having computed the effective characteristics 
on the basis of Young moduli, Poisson ratios, coefficient of thermal expansion and 
heat conduction coefficient [106,163,347] it will be possible to provide the coupled 
temperature-displacement FE analyses of periodic composite materials. At the 
same time it will be valuable to work out the problem presented in the context of 
viscoelastic or elastoviscoplastic material models of the composite constituents 
[74,368]. It will enable us to approximate computationally the fracture and failure 
phenomena in composites resulting from the interface defects or partial debonding 
using the homogenisation approach.   
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2.3.3.2.2 Monte Carlo Simulation Analysis 

Starting from the formula describing the effective elasticity tensor components, 
their expected values are derived using the basic theorems on the random variables 
as follows [191]:  
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ijkl

(2.167) 

The expressions for the variances (and generally covariances) have a more 
complicated form than the expectations because the averaged stresses and elasticity 
tensor are correlated variables. Therefore  
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The random homogenisation fields ),( ωχ xij  for general composites, similar to 

the deterministic ones, are calculated only numerically. The following probabilistic 
stress boundary conditions are imposed on the boundary ),1( aa−Γ  to find the 

homogenisation functions:  
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where λ(ω) and µ(ω) are the Lame constants. If Young moduli of composite 
components are considered as input random variables then the expected values and 
variances of boundary forces are obtained by separating the RHS into those 
components corresponding to 1−Ωa  and aΩ , respectively. After some algebraic 

transformations there holds  

[ ] [ ] [ ]11)( )()();( −− ⋅−⋅= aapqiaapqiipq eEBeEBxFE ννω (2.171) 
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where the operator ))(( xνpqiB  similar to the tensor ijklA  introduced by eqn (2.14) 

is defined as  
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and their variances are equal to  
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(2.173) 

Finally, probabilistic moments of the effective characteristics are derived using 
statistical estimation methods, according to which the expected values and the 
relevant covariances (computed using the unbiased estimator) of the effective 
elasticity tensor components are obtained as 
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where ( )ωjeff
ijpqC )( , Mj ,...,1=  are random series of the tensor components obtained 

as a result of the generation of numerical random values. 
The homogenisation problem presented is implemented into the program 

MCCEFF, which is based on the Monte Carlo simulation technique. The 
implementation of the MCS has been selected from among many other 
probabilistic methods, because this method consists of computer generation of 
random variables in the mechanical problem (cf. Figure 2.98) and computing the 
sequence of deterministic solutions associated with each variable generated; 
similar engineering software is also available [47].  Considering the fact that a 
composite structure has a relatively small number of degrees of freedom, a crude 
random sampling method is used in the computations (contrary to the Random 
Importance or Stratified Sampling methods) [73,125,139].  

Define N, m, a, c, E[e], σ(e), E[ν], σ(ν)
↓

Generate uniform distribution { } )1,0(,...,1 −∈ mII N

Do for k=1,N
)(mod1 mcaII kk += −

Enndo 
↓
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Transform I→x: uniform distribution on (0,1) 
Scaling distribution {I} by the parameter m

↓
Transform pairwise (xi,xi+1)→(yi,yi+1): N(0,1) 

Do for i=1,N

⎪⎩

⎪
⎨
⎧

−=
−=

++

+

11

1

2sinln2

2cosln2

iii

iii

xxy

xxy

π
π

Enddo 
↓

Transform y→e,ν
Do for i=1,N

ei=E[e]+yiσ(e); νi=E[ν]+yiσ(ν)
Enddo 

↓
Cutting off e,ν distributions 

Verify for i=1,N
( ) trueeS =∞<<01 ; ( ) trueS =<<− 2

1
2 1 ν

Enddo 
↓

Computations of the total sample length 
M=N-K: K=sup(k1,k2); 

k1,k2 -  number of S1,S2 negations 
Figure 2.98. Algorithm for random numbers generation  

However, the most important reason for the MCS application is that the 
accuracy of the output variable probabilistic moments estimation does not depend 
on the input variable coefficient of variation (as for the SFEM), but on the total 
number of iterations performed. Taking into account the estimator convergence 
studies and some theoretical considerations, the total number of random trials M
has been taken as equal to 1,000. The flowchart of the program used for 
probabilistic homogenisation is shown in Figure 2.99. As presented, the program 
makes it possible to discretise automatically the RVE on the basis of the main cell 
geometrical parameters, visualisation of the mesh introduced, random generation 
of the input random variables and iterative computations of the homogenisation 
functions as well as statistical estimators of either upper and lower bounds or direct 
effective characteristics of the elasticity tensor components.  

Automatic-parametric mesh generator
↓

Input data visualization
↓

1st loop over random spaces 
Do for iter=1,M

Generation of ( )ωe , ( )ων
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Enddo 

Computations of PDFs of elasticity tensor components 

Upper and lower bounds: ( )( )ω)(sup eff
ijklC , ( )( )ω)(inf eff

ijklC

2nd loop over random spaces
Do for iter=1,M

Generation of )()( ωipqF

Enddo 
↓

3rd loop over random spaces 
Do for iter=1,M

Homogenisation plane strain problems  

( )ωχ ;)( xipq , ( )
Ω

⎟⎠
⎞⎜⎝

⎛ ωχσ ;
i)pq(kl

x

( )ω;)( xeff
ijklC

Enddo 
↓

4th loop over random spaces 
do for iter=1,M

Computations of statistical estimators 

( ))(eff
ijklp Cµ , ( )( ))(sup eff

ijklp Cµ , ( )( ))(inf eff
ijklp Cµ

( )( ))(sup eff
ijklCPDF , ( ))(eff

ijklCPDF , ( )( ))(inf eff
ijklCPDF

Enddo 
Figure 2.99. Algorithm for the MCS simulation of homogenisation procedure   

Numerical analysis of probabilistic homogenisation of the fibre composite with 
stochastic interface defects has been performed using the MCCEFF system 
described above. Internal automatic generator for the square RVE with a centrally 
located round fibre occupying about 50% of the RVE with interface defects has 
been used (the influence of fibre radius variation on the stochastic displacements 
and stress fields has been discussed previously). Considering greater composite 
sensitivity to the matrix defects (bubbles), only composites having such 
discontinuities have been homogenised. The elastic constants for the fibre material

have been taken as follows: [ ]1eE =84 GPa, ν1 =0.22 and the coefficient of Young 

modulus variation ( )1eα =0.1, and for matrix: [ ]2eE =4 GPa, 2ν =0.34. Interface 

defect parameters have been taken in such a way that the coefficients of variation 
of these parameters were equal to 0.1 in all tests: ( ) ][1.0 rEr ⋅=σ  and 

( ) ][1.0 nEn ⋅=σ .

The main aim of the numerical experiments performed was a numerical 
verification of the presented mathematical approach to homogenisation of 
composites with stochastic interface defects. Considering large number of 
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parameters in this approach it was necessary to analyse the probabilistic sensitivity 
of the effective elasticity tensor components. It was done with respect to the 
expected values of the interface defect number and volume and the coefficient of 
matrix Young moduli variation as design parameters. Finally, 132 simulations have 
been performed (with 1000 iterations each) with the following remaining input 
values: E[r]=R{0.03,0.04,0.05} and E[n] has been assumed as equivalent to the 
percentage ratio of the boundary where the defects are located to the total interface 
length from 10% to 60% every 5%. The coefficient of matrix Young modulus 
variation for tests No 1-4 has been taken as 0.100, 0.075, 0.050, 0.025, 
respectively.  

Probabilistic moments of the effective elasticity tensor obtained as a result of 
the simulations are compared in Figures 2.100-2.119. The expected values of 

)()(
1111 ωeffC  are shown in such a way that the test results are presented in increasing 

order in the relevant figures. The coefficients of variation of )()(
1212 ωeffC  are 

neglected in the sensitivity analysis because this random variable is a function of 
random fluctuations of the fibre Young modulus. In all the collected figures the 
ratio of interface discontinuities (DB) to the entire boundary is marked on the 

horizontal axes, while the expected values [ ])()( ωeff
ijklCE  or the coefficients of 

variation ( ))()( ωα eff
ijklC  are displayed on the vertical axes, respectively.  

A decrease of the expected values of )()( ωeff
ijklC  with an increase of the interface 

defects number is observed with generally small differences in comparison with 
the composite with perfect interface. For an increase of the parameter DB from 

10% to 60%, the decrease considered is about 10% for [ ])()(
1111 ωeffCE  and 

[ ])()(
1122 ωeffCE  components, while for [ ])()(

1212 ωeffCE  it is only 1%. The low sensitivity 

of the values for [ ])()( ωeff
ijklCE  obtained with respect to the coefficient of the matrix 

Young modulus variation seems to be very important, as well. Moreover, it can be 
noted that for an increase of the expected values of the interface defects, the values 

of [ ])()(
1111 ωeffCE  and [ ])()(

1122 ωeffCE  increase too, and [ ])()(
1212 ωeffCE - decreases. 

Finally, the increasing DB implies a decrease in the differences of [ ])()(
1111 ωeffCE  and 

[ ])()(
1122 ωeffCE  obtained for different defects values, while for [ ])()(

1212 ωeffCE  these 

differences increase with the increasing total number of the defects.  
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Figure 2.100. Expected values [ ])()(
1111 ωeffCE  in test 1  

Figure 2.101. Expected values [ ])()(
1111 ωeffCE  in test 2  

Figure 2.102. Expected values [ ])()(
1111 ωeffCE  in test 3  
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Figure 2.103. Expected values [ ])()(
1111 ωeffCE  in test 4  

Figure 2.104. Expected values [ ])()(
1122 ωeffCE  in test 1 

Figure 2.105. Expected values [ ])()(
1122 ωeffCE  in test 2 
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Figure 2.106. Expected values [ ])()(
1122 ωeffCE  in test 3 

Figure 2.107. Expected values [ ])()(
1122 ωeffCE  in test 4 

Figure 2.108. Expected values [ ])()(
1212 ωeffCE  in test 1 
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Figure 2.109. Expected values [ ])()(
1212 ωeffCE  in test 2 

Figure 2.110. Expected values [ ])()(
1212 ωeffCE  in test 3 

Figure 2.111. Expected values [ ])()(
1212 ωeffCE  in test 4 



124     Computational Mechanics of Composite Materials  

Figure 2.112. Coefficients of variation ( ))()(
1111 ωα effC  in test 1 

Figure 2.113. Coefficients of variation ( ))()(
1111 ωα effC  in test 2 

Figure 2.114. Coefficients of variation ( ))()(
1111 ωα effC  in test 3 
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Figure 2.115. Coefficients of variation ( ))()(
1111 ωα effC  in test 4 

Figure 2.116. Coefficients of variation ( ))()(
1122 ωα effC  in test 1 

Figure 2.117. Coefficients of variation ( ))()(
1122 ωα effC  in test 2 
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Figure 2.118. Coefficients of variation ( ))()(
1122 ωα effC  in test 3 

Figure 2.119. Coefficients of variation ( ))()(
1122 ωα effC  in test 4 

Analysing the coefficients of variation ( ))()( ωα eff
ijklC , a nonlinear increase of 

these coefficients with a DB increase can be observed in all tests. This dependence 
has a character similar to the behaviour of the coefficient of variation of the Young
modulus obtained during the interphase probabilistic averaging. Moreover, all 
results are in the range of [0.00,0.12] for all the numerical tests, being negligibly 
greater than the maximum value of the input parameter ( )2eα . Furthermore, the 

correlation of interface defect value increases and an ( ))()( ωα eff
ijklC  increase is 

observed, and in opposition to the expected values, the coefficients of the 

)()( ωeff
ijklC  tensor variation are sensitive to ( )2eα  changes. Together with the 

decreasing coefficients of the matrix Young modulus variation the following 
changes are observed:  

- decrease of  ( ))()(
1111 ωα effC  and ( ))()(

1122 ωα effC ;
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- increase of differences between these coefficients obtained for particular values 
of interface defects;  

- significantly faster increase of ( ))()( ωα eff
ijklC  (from 10% in test no 1 to about 30% 

in test no 4).  

The coefficients ( ))()(
1212 ωα effC  (not considered in the analysis) show total non-

sensitivity to analysed parameters.  
Further, taking into account that all the results obtained from the Monte Carlo 

simulations, e.g. the first two probabilistic moments of the effective elasticity 
tensor, are only statistical estimators of the real values of these parameters, the 
numerical sensitivity of these estimators to the number of iterations should be 
analysed. Such an analysis is performed on the periodicity cell taking the total 
number of random trials as N=5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000 and 
10000, respectively.  

Only the probabilistic parameters of )()(
1111 ωeffC are shown, because variations of 

the other component moments of )()( ωeff
ijklC  are quite similar to those presented. 

The total numbers of random number sampling are marked on the horizontal axes, 

while the analysed values of )()( ωeff
ijklC  are on the vertical axes. The functions 

describing convergence of particular estimators obtained in the numerical 
experiments enable us to verify the correctness of the simulations performed and 
come up with an optimum number of the samples for estimation of any 

probabilistic coefficient and/or moment for the tensor )()( ωeff
ijklC .

Figure 2.120. Statistical convergence of the expected value [ ])()(
1111 ωeffCE



128     Computational Mechanics of Composite Materials  

Figure 2.121. Statistical convergence of the expected value [ ])()(
1122 ωeffCE

Figure 2.122. Statistical convergence of the expected value [ ])()(
1212 ωeffCE

Figure 2.123. Statistical convergence of coefficient of variation ( ))()(
1111 ωα effC
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Figure 2.124. Statistical convergence of coefficient of variation ( ))()(
1122 ωα effC

Figure 2.125. Statistical convergence of coefficient of variation ( ))()(
1212 ωα effC

It is seen from the analysis of the expected values of )()( ωeff
ijklC  that the 

estimator convergence character is described by a curve of similar shape in all the 
tests. This curve gradually increases from a minimum at N=5 to a maximum at 
about N=30 to oscillate with asymptotic convergence to the value approximated. It 
is important that in practice for N=100 estimator gives quite a good estimation with 
satisfactory accuracy. Taking for example N=1000, computational error resulting 
from statistical estimation is negligibly small in comparison with the estimated 
value.  

Convergence of ( ))()( ωα eff
ijklC  estimators has quite a different character than for 

[ ])()( ωeff
ijklCE  estimators described above. From the maximum obtained for N=5 the 

curve describing the estimator as a function of the total number of iterations 
decreases between two inflection points for about N=10 and N=30, then for about 
N=100 it starts to converge asymptotically to the approximated quantity. 
Analogous to the expected values the shape of the analysed curves is quite similar 
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each time for different tests and different effective elasticity tensor components. 
Finally, a good approximation is obtained for N=100, while for N=1000 the 
computational error is negligibly small.  

As can be seen in Figures 2.126 and 2.127, the total number of random trials 
necessary in the simulation for precise enough determination of the PDF for 

)()(
1111 ωeffC  is even greater than, for example 5,000-10,000.  

Figure 2.126. Statistical convergence of PDF of )()(
1111 ωeffC

Figure 2.127. Statistical convergence of PDF of )()(
1111 ωeffC

The main idea behind performing further numerical experiments is to compute 
the expected values and variances (or the coefficients of variation) of the effective 
elasticity tensor components for the RVE of the superconducting coil cable 
[199,221]. Next aim is to check the variability of the effective characteristic 
probabilistic moments with respect to the moments of the input random variables. 
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Probabilistic effective characteristics are compared with the appropriate upper and 
lower bounds probabilistic moments for the same composite specimen.  

Due to the internal horizontal and vertical symmetry of the RVE, only a simple 
quarter of the periodicity cell has been analysed in the homogenisation procedure 
for the discretisation of this cell shown before.   

Elastic characteristics and their probabilistic moments of the RVE components 
in the form of the expected values and the standard deviations of Young moduli 
and Poisson ratios as well as of the Kirchhoff moduli are collected in Table 2.14.  

Table 2.14. Probabilistic moments of the elastic characteristics of the superconductor  
Material E[e]

[GPa] 
σ(e)
[GPa] 

E[ν] σ(ν) E[G]
[GPa] 

σ(G)
[GPa] 

Tube 205.0 8.0 0.265 0.010 81.0 2.0 
Superconductor (test 1) 130.0 0.0 0.340 0.000 70.0 0.0 
Superconductor (test 2) 46.8 0.0 0.122 0.000 25.2 0.0 
Jacket 126.0 12.0 0.311 0.012 48.0 6.0 
Insulation 36.0 0.0 0.210 0.000 11.0 0.0 

Three groups of computational experiments have been performed. It is assumed 
that all elastic characteristics are equal to those specified in Table 2.14 in the first 
and second groups of computations (tests 1 and 2), while the elastic parameters of 
the superconducting strands are omitted in the last test. The strand volume fraction 
in the plane considered is assumed in test 1 as equal to 100%, while in the test 2 it 
is assumed equal to 36% (approximately the real value). The elastic characteristics 
of the strands for the second case are calculated using of spatial averaging only. 
These characteristics can be derived by some homogenisation approach (Mori-
Tanaka or self-consistent, for instance) if only the longitudinal elastic modulae are 
measured statistically.   

The results of numerical analyses are presented in Tables 2.15-2.20. Upper and 
lower bounds as well as the effective elastic properties for test 1 are collected in 
Tables 2.15 and 2.16, respectively, for test 2 they are outlined in Tables 2.17 and 
2.18, while for test 3 they are outlined in Tables 2.19-2.20. Deterministic values of 
the effective elasticity tensor and their up to fourth order probabilistic 
characteristics (expected values, coefficients of variation, asymmetry and 
concentration) are shown for all these tests.  

Table 2.15. Effective elasticity tensor components [GPa] in test 1 
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Deterministic values 154.94 68.85 43.67 
E[C] 154.27 68.52 43.94 
α(C) 5.56e-2 5.44e-2 5.76e-2 
β(C) -2.06e-1 -2.41e-1 9.98e-2 
γ(C) 3.27 3.29 3.15 
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Table 2.16. Upper and lower bounds for effective elasticity tensor [GPa] in test 1 
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Upper and lower bounds presented  
 sup(C) inf(C) sup(C) inf(C) Sup(C) inf(C)
Deterministic values 163.49 146.47 75.56 63.27 43.97 41.60 
E[C] 163.60 146.18 75.81 63.16 43.89 41.51 
α(C) 6.89e-2 5.76e-2 9.78e-2 8.14e-2 4.42e-2 3.95e-2 
β(C) 1.79e-7 -1.04e-7 3.32e-7 -1.12e-8 -1.15e-7 -2.51e-7 
γ(C) 3.09 3.06 3.20 3.02 3.07 3.17 
Voigt-Reuss bounds  
Deterministic values 171.49 130.33 80.95 52.63 45.27 38.85 
E[C] 171.88 129.97 81.43 52.46 45.23 38.76 
α(C) 6.78e-2 4.72e-2 9.29e-2 6.60e-2 4.54e-2 3.45e-2 
β(C) 3.23e-7 -2.51e-7 5.15e-7 -1.75e-7 -2.30e-8 -2.50e-7 
γ(C) 3.26 3.17 3.54 3.09 3.03 3.30 

Table 2.17. Effective elasticity tensor components [GPa] in test 2 
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Deterministic values 102.33 36.47 33.69 
E[C] 102.50 36.69 33.49 
α(C) 5.83e-2 5.90e-2 6.38e-2 
β(C) -1.86e-1 -1.92e-1 -9.96e-2 
γ(C) 3.23 3.25 3.15 

Table 2.18. Upper and lower bounds for effective elasticity tensor [GPa] in test 2  
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Upper and lower bounds presented  
 sup(C) inf(C) sup(C) inf(C) sup(C) inf(C)
Deterministic values 100.24 82.24 35.21 22.74 32.52 29.75 
E[C] 100.37 82.05 35.45 22.68 32.46 29.69 
α(C) 8.18e-2 4.11e-2 1.40e-1 5.84e-2 4.99e-2 3.46e-2 
β(C) 2.12e-7 -2.38e-7 4.16e-7 -1.58e-7 -9.73e-8 -2.89e-7 
γ(C) 3.16 3.15 3.38 3.08 3.06 3.21 
Voigt-Reuss bounds  
Deterministic values 113.11 71.80 43.86 16.64 34.63 27.58 
E[C] 113.50 71.65 44.34 16.61 34.58 27.52 
α(C) 1.03e-2 2.48e-2 1.71e-1 2.57e-2 5.94e-2 2.46e-2 
β(C) 3.23e-7 -4.13e-7 5.15e-7 -4.02e-7 -2.30e-8 -4.17e-7 
γ(C) 3.26 3.40 3.54 3.38 3.03 3.41 
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Table 2.19. Effective elasticity tensor components [GPa] in test 3 
Effective 
Characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Deterministic values 75.07 30.15 25.89 
E[C] 75.09 30.29 25.38 
α(C) 9.29e-2 1.06e-1 6.94e-2 
β(C) -1.14e-1 -6.40e-2 -9.97e-2 
γ(C) 3.16 3.15 3.17 

Tab. 2.20. Upper and lower bounds for effective elasticity tensor [GPa] in test 3 
Effective 
characteristics 

)(
1111

effC )(
1212

effC )(
1122

effC

Upper and lower bounds presented 
 sup(C) inf(C) sup(C) inf(C) sup(C) inf(C)
Deterministic values 73.50 4.02 30.47 4.64e-2 21.51 1.984 
E[C] 73.34 4.02 30.37 4.64e-2 21.49 1.98 
α(C) 1.03e-1 2.34e-3 1.57e-1 3.34e-2 6.56e-3 2.75e-3 
β(C) 2.42e-7 -5.64e-7 4.30e-7 5.57e-7 -7.35e-8 -5.67e-7 
γ(C) 3.182 3.730 3.398 3.704 3.049 3.729 
Voigt-Reuss bounds  
Deterministic values 94.84 2.55 41.27 1.23e-2 26.79 1.27 
E[C] 95.23 2.55 41.74 1.23e-2 26.74 1.27 
α(C) 1.22e-1 9.72e-4 1.81e-1 3.55e-2 7.67e-2 1.15e-3 
β(C) 3.23e-7 -5.80e-7 5.15e-7 5.79e-7 -2.30e-8 -5.89e-7 
γ(C) 3.26 3.77 3.54 3.76 3.03 3.77 

First a general observation, which agrees with engineering intuition, is that the 
deterministic quantities and expected values for upper and lower bounds and 
effective elasticity tensor components are greater for test 1 (composite including 
superconductor) than for test 2 (the cell without superconducting strands). Further, 
it is seen that the results of deterministic analyses approximate very well the 
expected values obtained in probabilistic simulations and that deterministic results 
are generally lower than the approximated expectations.  

Analysing the coefficients of variation of all variables computed it is 
characteristic that the results of test 1 are significantly smaller than the input 
coefficients and the coefficients resulting from test 2. It is caused mainly by the 
fact that some of the input elastic characteristics including superconductor have the 
coefficients of variation equal to 0. Considering that the superconductor occupies a 
significant part of the periodicity cell, the coefficients α resulting from test 2 are in 
the range of those characterising the elastic properties of composite components. It 
should be outlined at the moment that probabilistic moments of effective 
characteristics of order higher than the second are in general in the range of the 
corresponding characteristics of the input elastic parameters in the probabilistic 
homogenisation of elastostatic problems.  

Observing characteristics of the third and fourth order it may be concluded that 
the upper and lower bounds of the effective tensor in both tests have symmetric 
probability density functions, while the effective characteristics PDFs show some 
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asymmetry. Finally, it can be observed that the coefficients of concentration are 
approximately equal to the value corresponding to the Gaussian variable 
probability distribution function.  

Considering these observations we can treat the probability density functions of 
the effective elastic characteristics as Gaussian, which enables us to characterise 
uniquely these distributions using only their first two probabilistic moments. This 
conclusion is very important in the context of the SFEM implementation of the 
problem where only the first two moments of the state functions can be computed 
and, furthermore, all odd moments are equal to 0.  

2.3.2.2.3 Stochastic Perturbation Approach to the 

Homogenisation  

The homogenisation technique presented in the preceding sections is combined 
now with the stochastic second order perturbation second central probabilistic 
moment method. To rewrite the stochastic version of the variational formulation of 
the homogenisation problem, the interface forces equivalent to the stress interface 
conditions should be stochastically perturbed first. It is known from the classical 
theory of homogenisation that in case of ideal bonds between the fibre and matrix, 
the interface load components are obtained in the form of the following difference,
cf. (2.155)  

)1(
)(

)2(
)()( ipqipqipq FFF −= (2.176) 

Taking into account the general Taylor series expansion it is found that   
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Rewriting the forces )(
)(

t
ipqF  for t=0,1,2, comparing the respective terms of zeroth, 

first and second order, it is obtained after some additional algebra that  
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Thus, the stochastic version of minimum potential energy principle for the 
homogenisation problem has the following form:  

� a single zeroth order equation:  
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� R first order equations: 
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� a single second order equation: 
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If the Young moduli of fibre and matrix are the components of the input random 
variable vector then there holds  
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where )(a
ijklA  is the tensor given by (2.14) and calculated for the elastic 

characteristics of the respective material indexed by a, whereas )(aψ  is the 

characteristic function. Thus, the first order derivatives of the elasticity tensor with
respect to the input random variable vector are obtained as  
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Hence, the second order derivatives have the form  
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while mixed second order derivatives can be written as  
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Considering the above, all components of the second order derivatives of the 

stiffness matrixes )( pqKαβ  in this problem are equal to 0. Moreover, since the 

assumption of the uncorrelation of input random variables  
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thus, the first and second partial derivatives of the vectors )(
)(

a
ipqF  with respect to the 

random variables vector are calculated as  

j
a

ijpqj
a

a
ijpq

a

a
ipq nAn

e

C

e

F )(
)()(

)( ==
∂

∂
∂

∂
, aΩ∈∂x , a=1,2 (2.189)

and 
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After all these simplifications, the set of equations (2.181) - (2.183) can be written 
in the following form:  

• a single zeroth order equation:  
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• R first order equations: 
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• a single second order equation: 
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where  
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It should be noted that (2.191) - (2.194) give the set of fundamental variational 
equations of the homogenisation problem due to the second order stochastic 
perturbation method. Next, these equations will be discretised by the use of 
classical finite element technique and, as a result, the zeroth, first and second order 
algebraic equations are derived. Further, let us introduce the following 
discretisation of the homogenisation function and its derivatives with respect to the 
random variables using the classical shape functions )(xαϕ i :
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where 2,1=i ; Rsr ,...,1, = ; N,...,1=α  (N is the total number of degrees of 
freedom employed in the region Ω ). In an analogous way, the approximation of 
the strain tensor components is introduced as  
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where )(xαijB  is the typical FEM shape functions derivatives  

)]()([)( ,,2
1 xxx ijjiijB ααα ϕϕ += , Ω∈x (2.201) 

Introducing equations stated above to the zeroth, first and second order 
statements of the homogenisation problem represented by (2.191) - (2.194), the 
stochastic formulation of the problem can be discretised through the following set 
of algebraic linear (in fact deterministic) equations:  
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where  
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and K, q(pv), Q(pv) denote the global stiffness matrix, generalised coordinates 
vectors of the homogenisation functions and external load vectors, 
correspondingly. Considering the plane strain nature of the homogenisation 
problem, the global stiffness matrix and its partial derivatives with respect to the 
random variables of the problem can be rewritten as follows:  
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as far as Young moduli are randomised only. Computing from the above equations 

successively the zeroth order displacement vector )0(
)( pvq  from (2.202), first order 

displacement vector r
pvq,

)(  from (2.203) and the second order displacement vector 
)2(
)( pvq  from (2.204) - (2.205), the expected values of the homogenisation function 

can be derived as  
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Their covariance matrix can be determined in the form  
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where α, β are indexing all the degrees of freedom of the RVE. Then, the expected
values of the stress tensor components can be expressed as  
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while its covariances - from the following equation:  
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where i,j,k,l,g,h,p,v=1,2; Efd ≤≤ ,1  standing for the finite elements numbers in 

the cell mesh. In accordance with the probabilistic homogenisation methodology, 
the expected values of the elasticity tensor components can be found starting from 
(2.136) as  
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The second term in this integral can be extended using second order 
perturbation method as follows:  
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There holds  
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Averaging both sides of this equation over the region Ω and including in the 
relation (2.213) together with spatially averaged expected values of the original 
elasticity tensor, the expected values of the homogenised elasticity tensor are 
obtained. Next, the covariances of the effective elasticity tensor components can be 
derived similarly as  
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Finally, the covariances of the effective elasticity tensor components are calculated 
below. Covariance of the first component in (2.216) is derived as  
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Next, the cross-covariances of the second component are calculated and there 
holds  
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which, by introducing the simplifying notation, becomes  
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Further, it is obtained that  

(
( ) ( ){ }) ( )

(
( ) ( ){ }) ( )

( ) ( )

( ) ( )∫∫

∫∫

∫

∫

∞+

∞−

∞+

∞−

∞+

∞−

∞+

∞−

∞+

∞−

+∞

∞−

∆∆+∆∆+

∆∆+∆∆=

++−

∆∆+∆∆+∆+∆+×

++−

∆∆+∆∆+∆+∆+

bbDCbbDC

bbDCbbDC

bbDDD

DDDDD

bbCCC

CCCCC

dxpbbdxpbb

dxpbbdxpbb

dxpbbCov

bbbbbb

dxpbbCov

bbbbbb

Rc
c

u
u

Ra
a

u
u

Rc
c

r
r

Ra
a

r
r

R
caacca

dc
cd

c
c

a
a

c
c

a
a

R
srrssr

vu
uv

u
u

r
r

u
u

r
r

)()(

)()(

)(,

)(,

,0,00,,0

,00,0,0,

,0
2
1,,00

,0
2
1,,,00,00

,0
2
1,,00

,0
2
1,,,00,00

ϕχϕχ

ϕχϕχ

ϕϕϕ

ϕϕϕϕϕ

χχχ

χχχχχ

(2.220)

Integration over the probability domain gives  
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or, in a more explicit way, that   
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Now, the third component is transformed as follows:   
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Introducing the symbolic summation notation for the tensor function considered 
above it can be written that   
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By the analogous way, it is obtained  
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The components of effective elasticity tensor covariances are found. Starting from 
the classical definition  
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Transforming the respective integrands and using Fubini theorem applied to the 
integrals of random functions we obtain further  
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which, using the classical definition of the covariance, is equal to  
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Introducing all the statements into the last one it can finally be written that  
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It should be underlined here that the above equations give complete a description 
of the effective elasticity tensor components in the stochastic second moment and 
second order perturbation approach. Finally, let us note that many simplifications 
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resulted here thanks to the assumption that the input random variables of the 
homogenisation problem are just the Young moduli of the fibre and matrix. If the 
Poisson ratios are treated as random, the second order derivatives of the 
constitutive tensor would generally differ from 0 and the stochastic finite element 
formulation of the homogenisation procedure would be essentially more 
complicated.  

For the periodicity cell and its discretisation shown in Figure 2.128 elastic 
properties of the glass fibre and the matrix are adopted as follows: the Young 
moduli expected values E[e1] = 84 GPa, E[e2] = 4.0 GPa, while the deterministic 
Poisson ratios are taken as equal to ν1 = 0.22 in fibre and ν2 = 0.34 – in the matrix.  

Figure 2.128. Periodicity cell tested  

Five different sets of Young moduli coefficients of variation are analysed 
according to Table 2.21 − various values between 0.05 and 0.15 have been adopted 
to verify the influence of the component data randomness on the respective 
probabilistic moments of the homogenised elasticity tensor. The finite difference 
numerical technique has been employed to determine the relevant derivatives with 
respect to the input random variables adopted.  

Table 2.21. The coefficient of variation of the input random variables   

Test number ( )1eα ( )2eα
1 0.050 0.050 
2 0.075 0.075 
3 0.100 0.100 
4 0.125 0.125 
5 0.150 0.150 

The cross-sectional fibre area equals to about a half of the total periodicity cell 
area. The results in the form of expected values and coefficients of variation of the 
homogenised tensor components obtained from four computational tests are shown 
in Table 2.22 and compared against the corresponding values obtained by using the 
MCS technique for the total number of random trials taken as 103.

Table 2.22. Coefficients of variation for the effective elasticity tensor   

Ω
1

Ω
2
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Test ( ))()(
1111 ωα effC ( ))()(

1122 ωα effC

 SFEM MCS SFEM MCS 
1 0.0410 0.0516 0.7152 0.0517 
2 0.0622 0.0777 0.1073 0.0777 
3 0.0830 0.1037 0.1430 0.1037 
4 0.1036 0.1297 0.1788 0.1297 
5 0.1244 0.1557 0.2146 0.1557 

It is seen that the results of the SFEM−based computations are slightly smaller 
than those resulting from the Monte Carlo simulations in the case of ( ))()(

1111 ωα effC ;

the opposite trend is observed for ( ))()(
1122 ωα effC . The differences between both 

models are acceptable for very small input coefficients of variation and above the 
value 0.1 (second order approach limitation) they enormously increase. It is also 
observed that the coefficients from the MCS analysis are equal with each other, 
while the SFEM returns different values for both effective tensor components. It 
follows the fact that the first partial derivatives of both components with respect to 
Young moduli of the fibre and matrix are different. These derivatives are included 
in the SFEM equations for the second order moments and, in the same time, they 
do not influence the MCS homogenisation model at all. Furthermore, a linear 
dependence between the results obtained and the input coefficients of variation of 
the components Young moduli is observed.  

The main reason for numerical implementation of the SFEM equations for 
modelling of the homogenisation problem is a decisive decrease in computation 
time in comparison to that necessary by the MCS technique. It should be 
mentioned that the Monte Carlo sampling time can be approximated as a product 
of the following times:  

(a) a single deterministic cell problem solution,  
(b) the total number of homogenisation functions required (three functions 

χ(11), χ(12) and χ(22) in this plane strain analysis),  
(c) the total number of random trials performed.  
There are some time consuming procedures in the MCS programs such as 

random numbers generation, post-processing estimation procedure and the 
subroutines for averaging the needed parameters within the RVE, which are not 
included, however their times are negligible in comparison with the routines 
pointed out before.  

On the other hand, the time for Stochastic Finite Element Analysis can be 
approximated by multiplication of the following procedure times: (a) the SFE 
solution of the cell problem (with the same order of the cost considered as the 
deterministic analysis) and the total number of necessary homogenisation 
functions. Taking into account the remarks posed above, the difference in 
computational time between MCS and SFEM approaches to the homogenisation 
problem is of the order of about (n-1)τ provided that n is the total number of MCS 
samples and τ stands for the time of a deterministic problem solution. Observing 
this and considering negligible differences between the results of both these 
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methods for smaller random dispersion of input variables, the stochastic second 
order and second moment computational analysis of composite materials should be 
preferred in most engineering problems. The only disadvantage is the complexity 
of the equations, which have to be implemented in the respective program as well 
as the bounds dealing with randomness of input variables (the coefficients of 
variation should be generally smaller than about 0.15).  

2.3.4 Upper and Lower Bounds for Effective 

Characteristics  

Let us consider the coefficients of the following linear second order elliptic 
problem [65]:  

fuεC =− ))(( εεdiv ;   Ω∈x (2.230)

)()( ,,2
1 εεεε ijjiij uu +=u ;   Ω∈x (2.231)

)()( )( pp x εεε ψ CC = (2.232)

with boundary conditions  

0=εu ;   Ω∂∈x (2.233)

In the above equations )(, εε uεu and f denote the displacement field, strain tensor 

and vector of external loadings, respectively. As was presented in Sec. 2.3.3.2, the 

effective (homogenised) tensor 0C  is such a tensor that replacing εC  and 0C  in 

the above system gives 0u  as a solution, which is a weak limit of εu  with scale 
parameter tends to 0. It should be mentioned that without any other assumptions on 
Ω microgeometry the bounded set of effective properties is generated. Moreover, it 
can be proved that there exist such tensors )inf( ijklC  and )sup( ijklC  that  

)sup()inf( 0
ijklijklijkl CCC ≤≤ (2.234)

It is well known that the theorem of minimum potential energy gives the upper 
bounds of the effective tensor, whereas the minimum complementary energy 
approximates the lower bounds. Thanks to the Eshelby formula the explicit 
equations are as follows: 



Elasticity problems     147 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−⎥⎦
⎤

⎢⎣
⎡ +=

−⎥⎦
⎤

⎢⎣
⎡ +=

−

=

−

−

=

−

∑

∑

u

N

r
rur

u

N

r
rur

C

C

µµµµ

κκκκ
1

1

1

1

1

1

)(sup

)(sup
(2.235)

where uκ , uµ  have the following form: 
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Further, lower bounds for the elasticity tensor are obtained as 
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where it holds that  
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and n is a total number of composite constituents where nrcr ≤≤1,  denote their 

volume fractions. It should be noted that 

)21(3 υ
κ

−
= e

(2.239)

)1(2 υ
µ

+
= e

(2.240)

µκλ 3
2−= (2.241)

µδδδδλδδ )( jkiljlikklijijklC ++= (2.242)

From the engineering point of view the most interesting is the effectiveness of 
such a characterisation of ijklC , which can be approximated as the difference 

between upper and lower estimates and, on the other hand, sensitivity of the 
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effective tensor with respect to material characteristics of the constituents. The 
Monte Carlo simulation technique has been used to compute probabilistic moments 
of the effective elasticity tensor components for the periodic superconductor 
analysed before. The superconducting cable consists of fibres made of a 
superconductor placed around a thin-walled pipe (tube) covered with a jacket and 
insulating material. Experimental data describing elastic characteristics of the 
composite constituents are collected in Table 2.23.  

Table 2.23. Probabilistic elastic characteristics of the superconductor components  

Material E[e] σ(e) E[ν] σ(ν)
316LN 205 GPa 8 GPa 0.265 0.010 

Incoloy 908
‘annealed’ 

‘cold worked’ 
182 GPa 
184 GPa 

-
-

0.303 
0.299 

-
-

Titanium 126 GPa 12 GPa 0.311 0.012 
Insulation 
G10-CR 36 GPa - 0.21 -

Because of negligible differences in the elastic properties of Incoloy (between 
the ‘annealed’ and ‘cold worked’ state) the ‘annealed’ state of the superconductor 
is considered further. All the results obtained in the computational experiments 
have been collected in Table 2.24 and Figures 2.129-2.137. Because of the fact 
that the expected values appeared to be rather insensitive to the total number of 
random trials in the Monte Carlo simulations, results of the relevant convergence 
tests have been omitted in the tables and presented further in the figures. The 
expected values considered have been collected in Table 2.24 for M=10,000 
random trials.  

Table 2.24. Effective elasticity tensor components and their expected values (in GPa) 

Effective Analysis type 
property Deterministic probabilistic 

type )(eff
JJJJC )(eff

JKKJC )(eff
JKJKC )(eff

JJJJC )(eff
JKKJC )(eff

JKJKC

sup-VR 189.56 81.83 53.86 189.94 82.30 53.82 
Sup 178.44 76.07 51.18 178.57 76.37 51.10 
Inf 156.99 62.70 47.14 156.68 62.61 47.03 

Inf-VR 137.93 51.86 43.03 137.54 51.71 42.92 

Effective properties collected in this chapter (sup, inf in Table 2.24) have been 
compared with the Voigt-Reuss ones (sup-VR, inf-VR in Table 2.24). Considering 
the results obtained, it should be noted that these first approximators are generally
more restrictive than the Voigt-Reuss ones. Further, it can be observed that 
deterministic values are, with acceptable accuracy, equal to the corresponding 
expected values. Thus, for relatively small standard deviations of the input elastic 
characteristics, the randomness in the effective characteristics can be neglected. 
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Finally, it can be noted that more restrictive bounds can be used to determine the 
effective elasticity tensor in a more efficient way. Taking as a basis the arithmetic 
average of the upper and lower bounds, the difference between these bounds is in 

the range of 13% for )(eff
JJJJC  bound component, 19% for )(eff

JKJKC  bound component 

and 8% for )(eff
JKKJC  bound component.  

The following figures contain the results of the convergence analysis of the 
coefficient of variation, asymmetry and concentration with respect to increasing 
total number of Monte Carlo random trials. All these coefficients are presented for 

)(eff
JJJJC  bounds in Figures 2.129, 2.132 and 2.135, for )(eff

JKJKC  bounds in Figures 

2.130, 2.133 and 2.136 and for )(eff
JKKJC  in Figures 2.131, 2.134 and 2.137. On the 

horizontal axes of these figures the total number of Monte Carlo random trials M is 
marked, while the vertical is used for the coefficient of variation.  

General observation here is that the )(eff
JKJKC  bounds are the most sensitive with 

respect to the randomness of input elastic characteristics. These coefficients for 
)(eff

JKJKC  bounds appeared to be the greatest and then we obtain the coefficients for 
)(eff

JJJJC  and )(eff
JKKJC , respectively. Next, it can be mentioned that the estimators of the 

coefficients of variation show fast convergence to their limits. Efficient 

approximation of final coefficients for various components of the tensor )(eff
ijklC

bounds is obtained for M equal to about 2,500 random trials. Generally, it is 
observed that the coefficients of variation of effective elasticity tensor fulfil the 
inequalities detected in case of the expected values. The greatest coefficients are 
obtained for Reuss bounds, next the upper and lower bounds proposed in this 
chapter, and the smallest for the Voigt lower bounds.  
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Figure 2.129. The coefficients of variation of )(eff
JJJJC  bounds  
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Figure 2.130. The coefficients of variation of )(eff
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Figure 2.132. The coefficients of asymmetry of )(eff
JJJJC  bounds  
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Figure 2.135. The coefficients of concentration of )(eff
JJJJC  bounds  
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Figure 2.136. The coefficients of concentration of )(eff
JKJKC  bounds  
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Figure 2.137. The coefficients of concentration of )(eff
JKKJC  bounds  

Observing the results presented in Figures 2.132 and 2.134 it can be observed 

that all coefficients of asymmetry of )(eff
ijklC  verified tend to 0 with increasing total 

number of random trials. Comparing )(eff
JJJJC  and )(eff

JKJKC against )(eff
JKKJC bounds it can 

be stated that the first two variables have minimum positive asymmetry, while the 
last have a negative one. It should be mentioned that for such probabilistic 
distributions with non-zero coefficients of asymmetry, the expected value is not 
equal to the most probable one.  

Moreover, taking into account the convergence of coefficients of asymmetry it 
is seen that they are generally more slowly convergent than coefficients of 
variation estimators. M larger than 5,000 is required to compute these estimators 
with satisfactory accuracy. Analogous to the coefficients of variation, the hierarchy 

of the expected values of )(eff
ijklC , which has been discussed above, is fulfilled.  
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Figures 2.135-2.137 present the coefficients of concentration for different 
components of the effective elasticity tensor. The estimator convergence analysis 
proves that M equal to almost 10,000 is needed to compute these coefficients 
properly. The convergence of these estimators is more complex than the previous 
ones, but generally their values are greater than 3, which is characteristic for the 

Gaussian variables. Thus it can be stated that the )(eff
ijklC  probabilistic distributions 

obtained are more concentrated around their expected values than the Gaussian 

variables, but this difference is no greater than a maximum of 15% for the )(eff
JKJKC

bounds.  
Figures 2.138-2.140 illustrate the probability density functions of the upper 

and lower bounds for )(eff
JJJJC , )(eff

JKJKC and )(eff
JKKJC  components of the effective 

elasticity tensor. On the horizontal axes of these figures the values computed for 
these components are marked, while on the vertical axes the relevant probability 
density function (PDF) is given.  

The PDFs for the tensor )(eff
ijklC  computed together with the additional 

coefficients of asymmetry and concentration β, γ show that these functions have 
distributions quite similar to the bell-shaped Gaussian distribution curve. Thus, in 
further analyses proposed in the conclusions, we assume that for the input random 
variables being elastic characteristics (Young moduli and Poisson ratios) being 
Gaussian uncorrelated random variables, the upper and lower bounds computed 
having also a Gaussian distribution, which essentially simplifies further estimation 
and related numerical analyses.  
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JKJKC  bounds  
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Figure 2.140. The probability densities of )(eff
JKKJC  bounds  

The results of numerical tests performed lead us to the conclusion that the 
probabilistic upper and lower bounds of the effective elasticity tensor may be very 
efficient in the characterisation of superconducting composites with randomly 
defined elastic characteristics because of negligible relative differences between 
the upper and lower bounds. Considering the computational time cost they appear 
to be much more useful in engineering practice than other FEM-based direct 
methods.  

Computational experiments carried out prove that the coefficients of variation 
of the bounds computed are in the range of the input random variables of the 
problem. Considering further analyses of homogenised superconducting coils, this 
fact confirms the need for the application of the SFEM in such computations, 
which is important for essential time savings in comparison with the simulation 
methods.  

The probabilistic sensitivity of the effective elastic characteristics with respect 
to the probabilistic material parameters should be verified computationally in 
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further analyses as an effect of regression test, for instance. Such an analysis 
enables us to find out these parameters of composite constituent elastic 
characteristics, which are the most influencing for global superconductor 
behaviour.  

The procedure for effective elastic properties approximation seems to be the 
only method, which can be successfully applied to the homogenisation of 
stochastic interface defects. Such an approach will make the elastic properties of 
the interphases much more sensitive to the presence of structural defects than was 
in case of the Probabilistic Averaging Method. Considering this, the bounds 
presented should be implemented in numerical analysis of stochastic structural 
defects into the artificial composite interphases.  

2.3.5 Effective Constitutive Relations for the Steel 

Reinforced Concrete Plates 

The homogenisation method proposed for composite plates analysis is not 
based on any mathematical model. However it seems to be very effective for high 
contrast steel-reinforced concrete plates [160]. The next main reason to apply this 
model is that the composite plate need not be periodic in the applied approach, 
which perfectly reflects the civil engineering needs. To get the effective 
characterisation for the elasticity tensor, Eshelby theorem can be used since upper 
and lower bounds for this tensor are determined. However it is proved by 
comparison with collected experimental results, either lower and upper bounds are 
very effective in computational modelling of a real plate. Both of them can be used 
to calculate the zeroth, first and second order stiffness matrix and the resulting 
probabilistic moments of displacements and stresses for the composite plate during 
the SFEM analysis. It decisively simplifies the numerical analysis in comparison to 
the traditional FEM modelling of such structures (where reinforcement 
discretisation is complicated); more accurate results, especially in terms of thin 
periodic plate vibration analysis, are shown in [155]. Finally, it should be 
mentioned that the homogenised effective characteristics for composite shells can 
be derived analogously, following considerations presented in [227,338].  

Numerical test deals with the homogenisation of steel-reinforced concrete 
plates characterised by the data collected in Table 2.25; the coefficients of 
variation randomized Young moduli are taken as 0.1 as in all previous 
experiments. The concrete rectangular plate with horizontal dimensions 0.90 m x 
0.90 m and thickness 0.045 m, supported at its corners and loaded by the vertical 
concentrated force is examined and Table 2.26 contains the deterministic and 
probabilistic homogenisation output. It can be observed that, as in previous 
examples, the deterministic and expected values are close to each other, 
respectively, and the resulting coefficients of variation are obtained as smaller or 
equal to those taken for input random variables.  
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Table 2.25. Material data of the composite plate  

Material properties Steel Concrete 
Young modulus 200.0 GPa 28.6 GPa 
Poisson ratio 0.30 0.15 
Volume fraction  0.0367 0.9633 
Yield stress 345.0 GPa 20.68 GPa 

Table 2.26. Effective materials characteristics 

Effective elasticity  
tensor components 

Deterministic Expected value Variation 

( )[ ]1111inf CE 42.53 GPa 42.52 GPa 0.0985 

( )[ ]1111sup CE 44.84 GPa 44.84 GPa 0.0905 

( )[ ]1212inf CE 13.13 GPa 13.12 GPa 0.0982 

( )[ ]1212sup CE 13.88 GPa 13.88 GPa 0.0896 

( )[ ]1122inf CE 16.27 GPa 16.28 GPa 0.0991 

( )[ ]1122sup CE 17.09 GPa 17.09 GPa 0.0896 

The most important observation is that the lower and upper bounds are almost 
equal for any of the effective elasticity tensor components. Thus it does not matter 
which of them are used in the approximation of the real composite structure. 
Hence, the very complicated discretisation process of this particular concrete 
structure type (ABAQUS) can be replaced with an analysis of the homogeneous 
plate with elasticity tensor components calculated as proposed above. After 
successful verification of other reinforced concrete plates with various 
combinations of input parameters, such formulas for the effective elasticity tensor 
could be incorporated in the finite element stiffness formation process to speed up 
the FEM modelling procedures for these structures.  

The variability analysis for expected values and the coefficients of variation of 
the effective elasticity tensor is presented in Figures 2.141 and 2.142 as a function 
of Young moduli expectations of the steel and concrete. It is seen that the Young 
modulus of the concrete matrix is detected as a crucial parameter for both 
probabilistic moments. It is due to the fact that the matrix is the dominating 
component (in the volumetric context) while the equations for homogenised tensor 
are rewritten as functions of the volume ratios of the composite components.  

Considering the above, the behaviour of a real composite is compared against 
the homogenised one, cf. Figure 2.143. It is seen that the central deflection 
increments for both models are almost equal in the elastic range and, further, some 
expressions for the nonlinear range should be proposed and verified.  
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Figure 2.141. Expected value of upper bound for the component C1111

Figure 2.142. Coefficient of variation of upper bound for the component C1111

A very broad discussion on theoretical and numerical modelling concepts in 
reinforced concrete structures have been presented in [22] - fracture analysis 
contained in this study can be incorporated into the SFEM using the approach 
described in [33]. Future analyses devoted to the application of homogenisation 
technique in reinforced plates modelling should focus on incorporation of the 
microcracks appearing in real matrices. It can be done using initial homogenisation 
of the cracks into the matrix [92,266,321] to find equivalent homogeneous 
medium; further homogenisation follows the above considerations. 

Taking into account all the results of this test as well as the previous analyses 
on the homogeneous plates with random parameters, the application of the 
Stochastic Finite Element Method for the homogenised plate should approximate 
the probabilistic moments of displacements [63] in linear elastic range for the real 
plate very well. The expected values and variances of the effective elasticity tensor 
can be obtained for this purpose by using symbolic MAPLE computations 
analogous to those presented above.  
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Figure 2.143. Vertical displacements of the composite plate centre  

2.4 Conclusions   

The main advantage of the homogenisation approach proposed is that any 
randomness in geometry or elasticity of the composite structures is replaced by a 
single effective random variable of the elasticity tensor components characterising 
such a structure. Hence, computational studies of engineering composites with 
different random variables using a homogeneous one with deterministically 
defined geometry and equivalent probability density function of the elastic 
properties can be carried out. It is observed that using an analytical expression for 
the homogenised elastic properties, the randomness in geometry for the periodicity 
cell can be introduced and can result in random fluctuations of the effective 
parameters only. Furthermore, even if the composite structure is not periodic, the 
results of homogenisation method application are satisfactory, i.e. the probabilistic 
response of the structure homogenised approximates very well the real composite 
model; analytical solution in the correlative approach for random quasi-periodic 
structures can be found in [278].  

The basic value of the proposed homogenisation method is that the equations 
for the expected values and covariances of effective characteristics do not depend 
on the PDF type of the input random fields. However, in case of greater values of 
higher order probabilistic moments related to the first two as well as the lack of the 
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PDFs symmetry, a higher order version of the perturbation method is 
recommended. It is important since the probability density function of the input 
may not always be assumed properly, while in most experimental cases it is a 
subject of the statistical approximation only. Application of a stochastic higher 
order perturbation technique is relatively easy for closed form homogenisation 
equations considering the symbolic differentiation approach. It should be 
emphasised that, taking into account the capability of MAPLE links with 
FORTRAN routines, the program can be used in further SFEM computations as an 
intermediate procedure for symbolic homogenisation and sequential order 
perturbation derivation.  

It should be underlined that the method proposed can find its application in 
stochastic reliability studies (SOSM approach) for various composite structures. 
This homogenisation technique makes it possible to reduce significantly the total 
number of degrees of freedom for such a structure, while the expected values and 
covariances of displacements and stresses enable one to estimate the second order 
second moment reliability (SORM) index or even third order reliability coefficients 
(W-SOTM). In the same time, both probabilistic methodologies have 
[171,175,180] and can find further applications in determination of effective heat 
conductivity coefficients in various models [216,294] including fibre-reinforced 
structures with some interfacial thermal resistance [303].  

Due to the satisfactory accuracy of the homogenisation approach in modelling 
of composite structures, the model worked out can be treated as the first step for 
so-called self-homogenising finite elements, where the computer program 
automatically homogenises the entire structure using original material composite 
characteristics and finally calculates the displacements and stresses probabilistic 
moments for an equivalent homogeneous medium. On the other hand, the 
stochastic perturbation homogenisation procedure can be further modified for 
elastoplastic composite structures using Transformation Field Analysis (TFA) or 
Fast Fourier Transform (FFT) approaches. In the same time, the study of stochastic 
elastodynamic effective behaviour is recommended since the still growing range of 
composites has possible engineering applications.  

2.5 Appendix 

We prove, in the context of the composite model introduced in this chapter, that 
u(x,y) being a solution of problem (2.121) is constant in the region Ω. For this 
purpose, let us consider u(y) being a Ω-periodic displacement function and the 
solution of the following boundary value problem:  
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where g(y) are given functions defined on Ω or Γr, r=1,...,m with m being the total 
number of various interface boundaries. The variational formulation of (A2.1) may 
be stated as follows:  
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for V∈v  being the following space:  
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31 (A2.3)

while the corresponding components of the vector v are equal on the two opposite 
faces of Ω. Taking into account these conditions and neglecting body forces, we 
arrive at the well-known relation, cf. (2.121):  

)(),( vvu La = (A2.4)

If cvi =  is taken, which belongs to the set C of vectors constant on Ω, there holds 
for all Cc ∈

0)( =cL (A2.5)

Thus, if g(y) from (A2.1) is such that 0)( ≠cL , there is no solution for the problem 

(A2.1). Next, let us introduce the space S=V/C and let us denote by .
k

 the norm 

in ( )[ ]31
kH Ω  and by .

k
 the norm in ( )kL Ω2 . Let us observe that  
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(3) There holds  
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(4) (A8) may be written equivalently as  
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(5) It can be proved that S is an Hilbert space for the norm  
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(6) The norm equivalent to (A2.9) on space S may be rewritten as  
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If we prove the statement (6) thus, due to the fact that N(v) is continuous as well as 
coercive on space S and, further, applying the Lax-Millgram theorem we arrive at 
the conclusion that there exists a unique solution for (A2.1). To show this fact let 
us note that  
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where  

( )vv 22
N≤ (A2.12)

There exists such a constant c1 that for all W∈v  that there holds  

( )vv 2
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Let us introduce the orthogonal projection operator O such that  

( )( ) CLO →Ω 3

1
2: (A2.14)

with respect to the scalar product corresponding to 
1

. . It yields  
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Equation (A2.15) is true if and only if for all V∈v  there holds  

( )v2
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2

111 NcOvv ≤− (A2.16)

We assume that it is possible to improve ( ) Vvv nnn ∈= 21 ,v  for any positive n such 

that  
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Setting ( )nnnnn OvvOvv 2211 , −−=w  we get for all Cc ∈  that  
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Then, { }nw  is bounded in V and there exists such a subsequence ( ){ }mmm ww 21 ,=w ,

which converges weakly to w0 in V. Since that, 
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Due to the lower semi-continuity there holds  
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Finally, it is obtained that  

( ) 00
1 =wijε ;   ( ) 00

2 =wijε (A2.21)

which gives as the result  
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